Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1970 Jan;45(1):4–7. doi: 10.1104/pp.45.1.4

Metabolism of Inositol Phosphates

I. Phytase Synthesis during Germination in Cotyledons of Mung Beans, Phaseolus aureus1

N C Mandal a, B B Biswas a
PMCID: PMC396344  PMID: 16657276

Abstract

The degradation of phytin in germinating mung bean seeds has been found to be associated with the increased activity of phytase in the cotyledon. In the differentiated embryo the increase of this activity is very low all throughout the growth periods studied. Phytase appears in the cotyledon during germination. No activity has been detected in the cotyledons of unsoaked seeds. Cycloheximide (10−6 M) inhibits the appearance of phytase by 61% during 24 and 48 hours after the start of germination. This phytase increase is dependent on the synthesis of new RNA in the cotyledon. Synthesis of DNA is not detected in the cotyledon during germination.

Full text

PDF
4

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bennett L. L., Jr, Ward V. L., Brockman R. W. Inhibition of protein synthesis in vitro by cycloheximide and related glutarimide antibiotics. Biochim Biophys Acta. 1965 Jul 15;103(3):478–485. doi: 10.1016/0005-2787(65)90140-1. [DOI] [PubMed] [Google Scholar]
  2. Bianchetti R., Sartirana M. L. The mechanism of the repression by inorganic phosphate of phytase synthesis in the germinating wheat embryo. Biochim Biophys Acta. 1967 Sep 26;145(2):485–490. doi: 10.1016/0005-2787(67)90066-4. [DOI] [PubMed] [Google Scholar]
  3. Biswas S., Biswas B. B. Enzymatic synthesis of guanosine triphosphate from phytin and guanosine diphosphate. Biochim Biophys Acta. 1965 Dec 9;108(4):710–713. doi: 10.1016/0005-2787(65)90069-9. [DOI] [PubMed] [Google Scholar]
  4. GIBBINS L. N., NORRIS F. W. Phytase and acid phosphatase in the dwarf bean, Phaseolus vulgaris. Biochem J. 1963 Jan;86:67–71. doi: 10.1042/bj0860067. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Gientka-Rychter A., Cherry J. H. De Novo Synthesis of Isocitritase in Peanut (Arachis hypogaea L.) Cotyledons. Plant Physiol. 1968 Apr;43(4):653–659. doi: 10.1104/pp.43.4.653. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. JACOB F., MONOD J. Genetic regulatory mechanisms in the synthesis of proteins. J Mol Biol. 1961 Jun;3:318–356. doi: 10.1016/s0022-2836(61)80072-7. [DOI] [PubMed] [Google Scholar]
  7. Kida M., Ujihara M., Ohmura E., Kaziwara K. The effect of chromomycin A-3 upon nucleic acid metabolism of Bacillus subtilis SB-15. J Biochem. 1966 Apr;59(4):353–362. doi: 10.1093/oxfordjournals.jbchem.a128310. [DOI] [PubMed] [Google Scholar]
  8. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  9. MAYER A. M. The breakdown of phytin and phytase activity in germinating lettuce seeds. Enzymologia. 1958 Jan 31;19(1):1–8. [PubMed] [Google Scholar]
  10. Marrè E. Ribosome and enzyme changes during maturation and germination of the castor bean seed. Curr Top Dev Biol. 1967;2:75–105. doi: 10.1016/s0070-2153(08)60284-7. [DOI] [PubMed] [Google Scholar]
  11. PEERS F. G. The phytase of wheat. Biochem J. 1953 Jan;53(1):102–110. doi: 10.1042/bj0530102. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. SCHERRER K., DARNELL J. E. Sedimentation characteristics of rapidly labelled RNA from HeLa cells. Biochem Biophys Res Commun. 1962 Jun 4;7:486–490. doi: 10.1016/0006-291x(62)90341-8. [DOI] [PubMed] [Google Scholar]
  13. Ward D. C., Reich E., Goldberg I. H. Base specificity in the interaction of polynucleotides with antibiotic drugs. Science. 1965 Sep 10;149(3689):1259–1263. doi: 10.1126/science.149.3689.1259. [DOI] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES