Abstract
Homogenates from the salt-excreting leaves of the mangrove Avicennia nitida were subjected to differential centrifugation and investigated for adenosine triphosphatase activities. At pH 6.75 a salt stimulation with peaks at three different sodium to potassium ratios could be demonstrated above the activity due to Mg2+ ions. The stimulation by sodium and potassium depends on the ionic strength of the test medium, higher salt concentrations being inhibitory. The plant system seems thus more complicated than the animal activities. Technically, this means that a search for (Na+ + K+)-activated ATPases in plants should be performed with a close spacing of Na:K ratios at several constant levels of salt. Literature data on the transport of Na+ and K+ indicate that the physiological situation is rather complex in plants.
Full text
PDFSelected References
These references are in PubMed. This may not be the complete list of references from this article.
- Brown H. D., Altschul A. M. Glycoside-sensitive ATPase from Arachis hypogaea. Biochem Biophys Res Commun. 1964 Apr 22;15(5):479–483. doi: 10.1016/0006-291x(64)90490-5. [DOI] [PubMed] [Google Scholar]
- Brown H. D., Neucere N. J., Altschul A. M., Evans W. J. Activity patterns of purified ATPase from Arachis hypogaea. Life Sci. 1965 Jul;4(14):1439–1447. doi: 10.1016/0024-3205(65)90023-8. [DOI] [PubMed] [Google Scholar]
- Fisher J., Hodges T. K. Monovalent ion stimulated adenosine triphosphatase from oat roots. Plant Physiol. 1969 Mar;44(3):385–395. doi: 10.1104/pp.44.3.385. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kylin A. Uptake and loss of Na, Rb, and Cs in relation to an active mechanism for extrusion of Na in Scenedesmus. Plant Physiol. 1966 Apr;41(4):579–584. doi: 10.1104/pp.41.4.579. [DOI] [PMC free article] [PubMed] [Google Scholar]