Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1970 Feb;45(2):188–191. doi: 10.1104/pp.45.2.188

Dipyridyl-induced Cell Elongation and Inhibition of Cell Wall Hydroxyproline Biosynthesis 1,2

N M Barnett a,3
PMCID: PMC396379  PMID: 16657301

Abstract

Incubation of soybean hypocotyl sections with 0.1 millimolar 2,2′-dipyridyl in the absence of auxin results in increases in growth rate and in cell wall extensibility lasting for about 3 hours. This is accompanied by greatly decreased biosynthesis of hydroxyproline, which ultimately appears in the wall, and in slightly reduced oxygen uptake, both of which continue for at least 9 hours. Continuous synthesis of hydroxyproline which appears in the cell wall is thus not necessary for short term growth. The decrease in growth and cell wall extensibility that occurs between the 3rd and 9th hours of dipyridyl inhibition cannot be attributed to cross-linking of newly synthesized hydroxyproline, since its synthesis is still inhibited.

Full text

PDF
188

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Chrispeels M. J. Synthesis and secretion of hydroxyproline containing macromolecules in carrots. I. Kinetic analysis. Plant Physiol. 1969 Aug;44(8):1187–1193. doi: 10.1104/pp.44.8.1187. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Cleland R. Hydroxyproline Formation and Its Relation to Auxin-induced Cell Elongation in the Avena Coleoptile. Plant Physiol. 1968 Oct;43(10):1625–1630. doi: 10.1104/pp.43.10.1625. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. HURYCH J., SHVAPIL M. INFLUENCE OF CHELATING AGENTS ON THE BIOSYNTHESIS OF COLLAGEN. Biochim Biophys Acta. 1965 Feb 15;97:361–363. doi: 10.1016/0304-4165(65)90108-x. [DOI] [PubMed] [Google Scholar]
  4. Holleman J. M., Key J. L. Inactive and protein precursor pools of amino acids in the soybean hypocotyl. Plant Physiol. 1967 Jan;42(1):29–36. doi: 10.1104/pp.42.1.29. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Holleman J. Direct incorporation of hydroxyproline into protein of sycamore cells incubated at growth-inhibitory levels of hydroxyproline. Proc Natl Acad Sci U S A. 1967 Jan;57(1):50–54. doi: 10.1073/pnas.57.1.50. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Key J. L., Barnett N. M., Lin C. Y. RNA and protein biosynthesis and the regulation of cell elongation by auxin. Ann N Y Acad Sci. 1967 Aug 9;144(1):49–62. doi: 10.1111/j.1749-6632.1967.tb34000.x. [DOI] [PubMed] [Google Scholar]
  7. Lockhart J. A. Physical nature of irreversible deformation of plant cells. Plant Physiol. 1967 Nov;42(11):1545–1552. doi: 10.1104/pp.42.11.1545. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Olson A. C. Proteins and Plant Cell Walls. Proline to Hydroxyproline in Tobacco Suspension Cultures. Plant Physiol. 1964 Jul;39(4):543–550. doi: 10.1104/pp.39.4.543. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES