Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1996 Apr 16;93(8):3497–3502. doi: 10.1073/pnas.93.8.3497

Plasmodium falciparum erythrocyte membrane protein 1 is a parasitized erythrocyte receptor for adherence to CD36, thrombospondin, and intercellular adhesion molecule 1.

D I Baruch 1, J A Gormely 1, C Ma 1, R J Howard 1, B L Pasloske 1
PMCID: PMC39638  PMID: 8622965

Abstract

Adherence of mature Plasmodium falciparum parasitized erythrocytes (PRBCs) to microvascular endothelium contributes directly to acute malaria pathology. We affinity purified molecules from detergent extracts of surface-radioiodinated PRBCs using several endothelial cell receptors known to support PRBC adherence, including CD36, thrombospondin (TSP), and intercellular adhesion molecule 1 (ICAM-1). All three host receptors affinity purified P. falciparum erythrocyte membrane protein 1 (PfEMP1), a very large malarial protein expressed on the surface of adherent PRBCs. Binding of PfEMP1 to particular host cell receptors correlated with the binding phenotype of the PRBCs from which PfEMP1 was extracted. Preadsorption of PRBC extracts with anti-PfEMP1 antibodies, CD36, or TSP markedly reduced PfEMP1 binding to CD36 or TSP. Mild trypsinization of intact PRBCs of P. falciparum strains shown to express antigenically different PfEMP1 released different (125)I-labeled tryptic fragments of PfEMP1 that bound specifically to CD36 and TSP. In clone C5 and strain MC, these activities resided on different tryptic fragments, but a single tryptic fragment from clone ItG-ICAM bound to both CD36 and TSP. Hence, the CD36- and TSP-binding domains are distinct entities located on a single PfEMP1 molecule. PfEMP1, the malarial variant antigen on infected erythrocytes, is therefore a receptor for CD36, TSP, and ICAM-1. A therapeutic approach to block or reverse adherence of PRBCs to host cell receptors can now be pursued with the identification of PfEMP1 as a malarial receptor for PRBC adherence to host proteins.

Full text

PDF
3497

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aley S. B., Sherwood J. A., Howard R. J. Knob-positive and knob-negative Plasmodium falciparum differ in expression of a strain-specific malarial antigen on the surface of infected erythrocytes. J Exp Med. 1984 Nov 1;160(5):1585–1590. doi: 10.1084/jem.160.5.1585. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Barnwell J. W., Asch A. S., Nachman R. L., Yamaya M., Aikawa M., Ingravallo P. A human 88-kD membrane glycoprotein (CD36) functions in vitro as a receptor for a cytoadherence ligand on Plasmodium falciparum-infected erythrocytes. J Clin Invest. 1989 Sep;84(3):765–772. doi: 10.1172/JCI114234. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Baruch D. I., Pasloske B. L., Singh H. B., Bi X., Ma X. C., Feldman M., Taraschi T. F., Howard R. J. Cloning the P. falciparum gene encoding PfEMP1, a malarial variant antigen and adherence receptor on the surface of parasitized human erythrocytes. Cell. 1995 Jul 14;82(1):77–87. doi: 10.1016/0092-8674(95)90054-3. [DOI] [PubMed] [Google Scholar]
  4. Biggs B. A., Anders R. F., Dillon H. E., Davern K. M., Martin M., Petersen C., Brown G. V. Adherence of infected erythrocytes to venular endothelium selects for antigenic variants of Plasmodium falciparum. J Immunol. 1992 Sep 15;149(6):2047–2054. [PubMed] [Google Scholar]
  5. Chaiyaroj S. C., Coppel R. L., Novakovic S., Brown G. V. Multiple ligands for cytoadherence can be present simultaneously on the surface of Plasmodium falciparum-infected erythrocytes. Proc Natl Acad Sci U S A. 1994 Nov 8;91(23):10805–10808. doi: 10.1073/pnas.91.23.10805. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Crandall I., Collins W. E., Gysin J., Sherman I. W. Synthetic peptides based on motifs present in human band 3 protein inhibit cytoadherence/sequestration of the malaria parasite Plasmodium falciparum. Proc Natl Acad Sci U S A. 1993 May 15;90(10):4703–4707. doi: 10.1073/pnas.90.10.4703. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Hasler T., Albrecht G. R., Van Schravendijk M. R., Aguiar J. C., Morehead K. E., Pasloske B. L., Ma C., Barnwell J. W., Greenwood B., Howard R. J. An improved microassay for Plasmodium falciparum cytoadherence using stable transformants of Chinese hamster ovary cells expressing CD36 or intercellular adhesion molecule-1. Am J Trop Med Hyg. 1993 Mar;48(3):332–347. doi: 10.4269/ajtmh.1993.48.332. [DOI] [PubMed] [Google Scholar]
  8. Howard R. J., Barnwell J. W., Rock E. P., Neequaye J., Ofori-Adjei D., Maloy W. L., Lyon J. A., Saul A. Two approximately 300 kilodalton Plasmodium falciparum proteins at the surface membrane of infected erythrocytes. Mol Biochem Parasitol. 1988 Jan 15;27(2-3):207–223. doi: 10.1016/0166-6851(88)90040-0. [DOI] [PubMed] [Google Scholar]
  9. Howard R. J., Gilladoga A. D. Molecular studies related to the pathogenesis of cerebral malaria. Blood. 1989 Dec;74(8):2603–2618. [PubMed] [Google Scholar]
  10. Iqbal J., Perlmann P., Berzins K. Plasmodium falciparum: analysis of the cytoadherence inhibition of the human monoclonal antibody 33G2 and of antibodies reactive with antigen Pf332. Exp Parasitol. 1993 Aug;77(1):79–87. doi: 10.1006/expr.1993.1063. [DOI] [PubMed] [Google Scholar]
  11. Iqbal J., Perlmann P., Berzins K. Serological diversity of antigens expressed on the surface of erythrocytes infected with Plasmodium falciparum. Trans R Soc Trop Med Hyg. 1993 Sep-Oct;87(5):583–588. doi: 10.1016/0035-9203(93)90097-a. [DOI] [PubMed] [Google Scholar]
  12. Kutner S., Breuer W. V., Ginsburg H., Aley S. B., Cabantchik Z. I. Characterization of permeation pathways in the plasma membrane of human erythrocytes infected with early stages of Plasmodium falciparum: association with parasite development. J Cell Physiol. 1985 Dec;125(3):521–527. doi: 10.1002/jcp.1041250323. [DOI] [PubMed] [Google Scholar]
  13. Leech J. H., Barnwell J. W., Miller L. H., Howard R. J. Identification of a strain-specific malarial antigen exposed on the surface of Plasmodium falciparum-infected erythrocytes. J Exp Med. 1984 Jun 1;159(6):1567–1575. doi: 10.1084/jem.159.6.1567. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. MacPherson G. G., Warrell M. J., White N. J., Looareesuwan S., Warrell D. A. Human cerebral malaria. A quantitative ultrastructural analysis of parasitized erythrocyte sequestration. Am J Pathol. 1985 Jun;119(3):385–401. [PMC free article] [PubMed] [Google Scholar]
  15. Ockenhouse C. F., Ho M., Tandon N. N., Van Seventer G. A., Shaw S., White N. J., Jamieson G. A., Chulay J. D., Webster H. K. Molecular basis of sequestration in severe and uncomplicated Plasmodium falciparum malaria: differential adhesion of infected erythrocytes to CD36 and ICAM-1. J Infect Dis. 1991 Jul;164(1):163–169. doi: 10.1093/infdis/164.1.163. [DOI] [PubMed] [Google Scholar]
  16. Ockenhouse C. F., Klotz F. W., Tandon N. N., Jamieson G. A. Sequestrin, a CD36 recognition protein on Plasmodium falciparum malaria-infected erythrocytes identified by anti-idiotype antibodies. Proc Natl Acad Sci U S A. 1991 Apr 15;88(8):3175–3179. doi: 10.1073/pnas.88.8.3175. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Ockenhouse C. F., Tandon N. N., Jamieson G. A., Greenwalt D. E. Antigenic and functional differences in adhesion of Plasmodium falciparum-infected erythrocytes to human and bovine CD36. Infect Immun. 1993 May;61(5):2229–2232. doi: 10.1128/iai.61.5.2229-2232.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Ockenhouse C. F., Tegoshi T., Maeno Y., Benjamin C., Ho M., Kan K. E., Thway Y., Win K., Aikawa M., Lobb R. R. Human vascular endothelial cell adhesion receptors for Plasmodium falciparum-infected erythrocytes: roles for endothelial leukocyte adhesion molecule 1 and vascular cell adhesion molecule 1. J Exp Med. 1992 Oct 1;176(4):1183–1189. doi: 10.1084/jem.176.4.1183. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Pasloske B. L., Howard R. J. Malaria, the red cell, and the endothelium. Annu Rev Med. 1994;45:283–295. doi: 10.1146/annurev.med.45.1.283. [DOI] [PubMed] [Google Scholar]
  20. Patnaik J. K., Das B. S., Mishra S. K., Mohanty S., Satpathy S. K., Mohanty D. Vascular clogging, mononuclear cell margination, and enhanced vascular permeability in the pathogenesis of human cerebral malaria. Am J Trop Med Hyg. 1994 Nov;51(5):642–647. [PubMed] [Google Scholar]
  21. Reeder J. C., Rogerson S. J., al-Yaman F., Anders R. F., Coppel R. L., Novakovic S., Alpers M. P., Brown G. V. Diversity of agglutinating phenotype, cytoadherence, and rosette-forming characteristics of Plasmodium falciparum isolates from Papua New Guinean children. Am J Trop Med Hyg. 1994 Jul;51(1):45–55. doi: 10.4269/ajtmh.1994.51.45. [DOI] [PubMed] [Google Scholar]
  22. Roberts D. J., Craig A. G., Berendt A. R., Pinches R., Nash G., Marsh K., Newbold C. I. Rapid switching to multiple antigenic and adhesive phenotypes in malaria. Nature. 1992 Jun 25;357(6380):689–692. doi: 10.1038/357689a0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Sherman I. W., Crandall I., Smith H. Membrane proteins involved in the adherence of Plasmodium falciparum-infected erythrocytes to the endothelium. Biol Cell. 1992;74(2):161–178. doi: 10.1016/0248-4900(92)90022-s. [DOI] [PubMed] [Google Scholar]
  24. Smith J. D., Chitnis C. E., Craig A. G., Roberts D. J., Hudson-Taylor D. E., Peterson D. S., Pinches R., Newbold C. I., Miller L. H. Switches in expression of Plasmodium falciparum var genes correlate with changes in antigenic and cytoadherent phenotypes of infected erythrocytes. Cell. 1995 Jul 14;82(1):101–110. doi: 10.1016/0092-8674(95)90056-x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Su X. Z., Heatwole V. M., Wertheimer S. P., Guinet F., Herrfeldt J. A., Peterson D. S., Ravetch J. A., Wellems T. E. The large diverse gene family var encodes proteins involved in cytoadherence and antigenic variation of Plasmodium falciparum-infected erythrocytes. Cell. 1995 Jul 14;82(1):89–100. doi: 10.1016/0092-8674(95)90055-1. [DOI] [PubMed] [Google Scholar]
  26. Van Schravendijk M. R., Pasloske B. L., Baruch D. I., Handunnetti S. M., Howard R. J. Immunochemical characterization and differentiation of two approximately 300-kD erythrocyte membrane-associated proteins of Plasmodium falciparum, PfEMP1 and PfEMP3. Am J Trop Med Hyg. 1993 Nov;49(5):552–565. doi: 10.4269/ajtmh.1993.49.552. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES