Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1970 Feb;45(2):223–227. doi: 10.1104/pp.45.2.223

Synthesis and Secretion of Hydroxyproline-containing Macromolecules in Carrots

II. In vivo Conversion of Peptidyl Proline to Peptidyl Hydroxyproline

Maarten J Chrispeels a,1
PMCID: PMC396385  PMID: 16657307

Abstract

The chelator α,α′-dipyridyl prevents the formation of protein-bound hydroxyproline without affecting protein synthesis as measured by the incorporation of 14C-proline. The inhibitory effect can be overcome by exogenous ferrous ions. Neither α,α′-dipyridyl nor Fe2+ interferes in any other known way with the synthesis and secretion of the hydroxyproline-rich proteins normally found in the cell wall. This reversal by Fe2+ of the inhibition of proline hydroxylation by α,α′-dipyridyl is used for a study in vivo of the hydroxylation reaction. This reaction has a temperature coefficient of 2.2, suggesting that it is an enzymatic process. Reversal by Fe2+ of the α,α′-dipyridyl inhibition can occur after protein synthesis has been arrested with cycloheximide, indicating that peptidyl proline is the substrate of the hydroxylation reaction. Hydroxylation occurs in the cytoplasm, and not in the cell wall, and only for a limited time after the incorporation of proline into the polypeptide chain. This suggests a spatial separation of the enzyme and the substrate.

Full text

PDF
223

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Chrispeels M. J. Synthesis and secretion of hydroxyproline containing macromolecules in carrots. I. Kinetic analysis. Plant Physiol. 1969 Aug;44(8):1187–1193. doi: 10.1104/pp.44.8.1187. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Felicetti L., Colombo B., Baglioni C. Inhibition of protein synthesis in reticulocytes by antibiotics. II. The site of action of cycloheximide, streptovitacin A and pactamycin. Biochim Biophys Acta. 1966 Apr 18;119(1):120–129. [PubMed] [Google Scholar]
  3. Holleman J. Direct incorporation of hydroxyproline into protein of sycamore cells incubated at growth-inhibitory levels of hydroxyproline. Proc Natl Acad Sci U S A. 1967 Jan;57(1):50–54. doi: 10.1073/pnas.57.1.50. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Juva K., Prockop D. J., Cooper G. W., Lash J. W. Hydroxylation of proline and the intracellular accumulation of a polypeptide precursor of collagen. Science. 1966 Apr 1;152(3718):92–94. doi: 10.1126/science.152.3718.92. [DOI] [PubMed] [Google Scholar]
  5. Olson A. C. Proteins and Plant Cell Walls. Proline to Hydroxyproline in Tobacco Suspension Cultures. Plant Physiol. 1964 Jul;39(4):543–550. doi: 10.1104/pp.39.4.543. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. PETERKOFSKY B., UDENFRIEND S. ENZYMATIC HYDROXYLATION OF PROLINE IN MICROSOMAL POLYPEPTIDE LEADING TO FORMATION OF COLLAGEN. Proc Natl Acad Sci U S A. 1965 Feb;53:335–342. doi: 10.1073/pnas.53.2.335. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. PROCKOP D. J., JUVA K. SYNTHESIS OF HYDROXYPROLINE IN VITRO BY THE HYDROXYLATION OF PROLINE IN A PRECURSOR OF COLLAGEN. Proc Natl Acad Sci U S A. 1965 Mar;53:661–668. doi: 10.1073/pnas.53.3.661. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. STEWARD F. C., POLLARD J. K., PATCHETT A. A., WITKOP B. The effects of selected nitrogen compounds on the growth of plant tissue cultures. Biochim Biophys Acta. 1958 May;28(2):308–317. doi: 10.1016/0006-3002(58)90477-3. [DOI] [PubMed] [Google Scholar]
  9. Udenfriend S. Formation of hydroxyproline in collagen. Science. 1966 Jun 3;152(3727):1335–1340. doi: 10.1126/science.152.3727.1335. [DOI] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES