Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1970 May;45(5):624–630. doi: 10.1104/pp.45.5.624

Photoreduction of α-Ketoglutarate to Glutamate by Vicia faba Chloroplasts 1

Curtis V Givan a,2, Alice L Givan a,2, Rachel M Leech a
PMCID: PMC396476  PMID: 16657357

Abstract

Intact chloroplasts isolated from leaves of Vicia faba L. var. the Sutton show a decline in the endogenous level of α-ketoglutarate upon illumination. α-Ketoglutarate supplied to the chloroplasts is similarly utilized in this light-dependent reaction, and its consumption is paralleled by a concomitant increase in the level of glutamate. There is no photostimulation of glutamate synthesis in chloroplasts broken by osmotic shock, but it can be somewhat restored by addition of ferredoxin and NADP. These results suggest that in the isolated chloroplast the synthesis of glutamate from α-ketoglutarate is regulated by the availability of reduced pyridine nucleotide generated by photosynthetic electron transport. This conclusion is supported by the finding of an apparent competition between the photoreduction of phosphoglycerate to triose phosphate and the photoutilization of α-ketoglutarate.

Full text

PDF
624

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arnon D. I. COPPER ENZYMES IN ISOLATED CHLOROPLASTS. POLYPHENOLOXIDASE IN BETA VULGARIS. Plant Physiol. 1949 Jan;24(1):1–15. doi: 10.1104/pp.24.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. BASSHAM J. A., KIRK M. PHOTOSYNTHESIS OF AMINO ACIDS. Biochim Biophys Acta. 1964 Sep 4;90:553–562. doi: 10.1016/0304-4165(64)90234-x. [DOI] [PubMed] [Google Scholar]
  3. BROWN A. H., GOOD N. Photochemical reduction of oxygen in chloroplast preparations and in green plant cells. I. The study of oxygen exchanges in vitro and in vivo. Arch Biochem Biophys. 1955 Aug;57(2):340–354. doi: 10.1016/0003-9861(55)90297-6. [DOI] [PubMed] [Google Scholar]
  4. Cockburn W., Walker D. A., Baldry C. W. The isolation of spinach chloroplasts in pyrophosphate media. Plant Physiol. 1968 Sep;43(9):1415–1418. doi: 10.1104/pp.43.9.1415. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. GRAHAM D., WALKER D. A. Some effects of light on the interconversion of metabolites in green leaves. Biochem J. 1962 Mar;82:554–560. doi: 10.1042/bj0820554. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Givan C. V. Short-term Changes in Hexose Phosphates and ATP in Intact Cells of Acer pseudoplatanus L. Subjected to Anoxia. Plant Physiol. 1968 Jun;43(6):948–952. doi: 10.1104/pp.43.6.948. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. HAVIR E. A., GIBBS M. STUDIES ON THE REDUCTIVE PENTOSE PHOSPHATE CYCLE IN INTACT AND RECONSTITUTED CHLOROPLAST SYSTEMS. J Biol Chem. 1963 Oct;238:3183–3187. [PubMed] [Google Scholar]
  8. HILLER R. G., WALKER D. A. Formation of labelled amino acids by exchange transamination. Biochem J. 1961 Jan;78:56–60. doi: 10.1042/bj0780056. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Harvey M. J., Brown A. P. Nicotinamide cofactors of intact chloroplasts isolated on a sucrose density gradient. Biochim Biophys Acta. 1969 Jan 14;172(1):116–125. doi: 10.1016/0005-2728(69)90096-6. [DOI] [PubMed] [Google Scholar]
  10. Hatch M. D., Slack C. R. NADP-specific malate dehydrogenase and glycerate kinase in leaves and evidence for their location in chloroplasts. Biochem Biophys Res Commun. 1969 Mar 10;34(5):589–593. doi: 10.1016/0006-291x(69)90778-5. [DOI] [PubMed] [Google Scholar]
  11. Heber U. W., Santarius K. A. Compartmentation and reduction of pyridine nucleotides in relation to photosynthesis. Biochim Biophys Acta. 1965 Nov 29;109(2):390–408. doi: 10.1016/0926-6585(65)90166-4. [DOI] [PubMed] [Google Scholar]
  12. Heber U., Hallier U. W., Hudson M. A. Untersuchungen zur intrazellulären Verteilungen von Enzymen und Substraten in der Blattzelle. II. Lokalisation von Enzymen des reduktiven und dem oxydativen Pentosephosphat-Zyklus in den Chloroplasten und Permeabilität der Chloroplasten-Membran gegenüber Metaboliten. Z Naturforsch B. 1967 Nov;22(11):1200–1215. [PubMed] [Google Scholar]
  13. Jensen R. G., Bassham J. A. Photosynthesis by isolated chloroplasts. Proc Natl Acad Sci U S A. 1966 Oct;56(4):1095–1101. doi: 10.1073/pnas.56.4.1095. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Latzko E., Gibbs M. Level of photosynthetic intermediates in isolated spinach chloroplasts. Plant Physiol. 1969 Mar;44(3):396–402. doi: 10.1104/pp.44.3.396. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Leech R. M., Kirk P. R. An NADP-dependent L-glutamate dehydrogenase from chloroplasts of Vicia faba L. Biochem Biophys Res Commun. 1968 Aug 21;32(4):685–690. doi: 10.1016/0006-291x(68)90293-3. [DOI] [PubMed] [Google Scholar]
  16. MEHLER A. H. Studies on reactions of illuminated chloroplasts. I. Mechanism of the reduction of oxygen and other Hill reagents. Arch Biochem Biophys. 1951 Aug;33(1):65–77. doi: 10.1016/0003-9861(51)90082-3. [DOI] [PubMed] [Google Scholar]
  17. MUDD J. B., McMANUS T. T. Metabolism of acetate by cellfree preparations from spinach leaves. J Biol Chem. 1962 Jul;237:2057–2063. [PubMed] [Google Scholar]
  18. Marino G., Greco A. M., Scardi V., Zito R. Purification and general properties of aspartate aminotransferase of ox heart. Biochem J. 1966 Jun;99(3):589–594. doi: 10.1042/bj0990589. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Nelson E. B., Tolbert N. E., Hess J. L. Glycolate stimulation of oxygen evolution during photosynthesis. Plant Physiol. 1969 Jan;44(1):55–59. doi: 10.1104/pp.44.1.55. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Robinson J. M., Stocking C. R. Oxygen evolution and the permeability of the outer envelope of isolated whole chloroplasts. Plant Physiol. 1968 Oct;43(10):1597–1604. doi: 10.1104/pp.43.10.1597. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. STUMPF P. K., BOVE J. M., GOFFEAU A. Fat metabolism in higher plants. XX. Relation of fatty acid synthesis and photophosphorylation in lettuce chloroplast. Biochim Biophys Acta. 1963 Jun 18;70:260–270. doi: 10.1016/0006-3002(63)90750-9. [DOI] [PubMed] [Google Scholar]
  22. Santarius K. A., Stocking C. R. Intracellular localization of enzymes in leaves and chloroplast membrane permeability to compounds involved in amino acid syntheses. Z Naturforsch B. 1969 Sep;24(9):1170–1179. doi: 10.1515/znb-1969-0915. [DOI] [PubMed] [Google Scholar]
  23. Walker D. A. Correlation between Photosynthetic Activity and Membrane Integrity in Isolated Pea Chloroplasts. Plant Physiol. 1965 Nov;40(6):1157–1161. doi: 10.1104/pp.40.6.1157. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Walker D. A., Hill R. The relation of oxygen evolution to carbon assimilation with isolated chloroplasts. Biochim Biophys Acta. 1967 Mar 8;131(2):330–338. doi: 10.1016/0005-2728(67)90146-6. [DOI] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES