Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1970 Jun;45(6):703–707. doi: 10.1104/pp.45.6.703

Photosynthesis and Photorespiration in Typha latifolia1

S J McNaughton a, Louise W Fullem a
PMCID: PMC396497  PMID: 16657378

Abstract

Photosynthetic rates of Typha latifolia, the broad-leaved cattail, are the equivalent of rates reported in tropical grasses and other plants which assimilate carbon by the phosphopyruvate carboxylase reaction, but photosynthesis in T. latifolia proceeds by a typical Calvin cycle. Glycolate oxidase, the photorespiratory enzyme, is present in high concentration in this species, but only minor quantities of the assimilated carbon pass through the photorespiratory pathway. However, continued operation of the pathway is apparently essential in the maintenance of assimilatory capacity. Glycolate oxidase function is not closely coupled to stomatal operation in T. latifolia.

Full text

PDF
703

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Cooper T. G., Beevers H. Beta oxidation in glyoxysomes from castor bean endosperm. J Biol Chem. 1969 Jul 10;244(13):3514–3520. [PubMed] [Google Scholar]
  2. Cossins E. A., Sinha S. K. The interconversion of glycine and serine by plant tissue extracts. Biochem J. 1966 Nov;101(2):542–549. doi: 10.1042/bj1010542. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Downton W. J., Tregunna E. B. Photorespiration and Glycolate Metabolism: A Re-examination and Correlation of Some Previous Studies. Plant Physiol. 1968 Jun;43(6):923–929. doi: 10.1104/pp.43.6.923. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Forrester M. L., Krotkov G., Nelson C. D. Effect of Oxygen on Photosynthesis, Photorespiration and Respiration in Detached Leaves. II. Corn and other Monocotyledons. Plant Physiol. 1966 Mar;41(3):428–431. doi: 10.1104/pp.41.3.428. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Frederick S. E., Newcomb E. H. Microbody-like organelles in leaf cells. Science. 1969 Mar 21;163(3873):1353–1355. doi: 10.1126/science.163.3873.1353. [DOI] [PubMed] [Google Scholar]
  6. Hatch M. D., Slack C. R., Johnson H. S. Further studies on a new pathway of photosynthetic carbon dioxide fixation in sugar-cane and its occurrence in other plant species. Biochem J. 1967 Feb;102(2):417–422. doi: 10.1042/bj1020417. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Hatch M. D., Slack C. R. Photosynthesis by sugar-cane leaves. A new carboxylation reaction and the pathway of sugar formation. Biochem J. 1966 Oct;101(1):103–111. doi: 10.1042/bj1010103. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. JIMENEZ E., BALDWIN R. L., TOLBERT N. E., WOOD W. A. Distribution of C14 in sucrose from glycolate-C14 and serine 3-C14 metabolism. Arch Biochem Biophys. 1962 Jul;98:172–175. doi: 10.1016/0003-9861(62)90163-7. [DOI] [PubMed] [Google Scholar]
  9. Kisaki T., Tolbert N. E. Glycolate and glyoxylate metabolism by isolated peroxisomes or chloroplasts. Plant Physiol. 1969 Feb;44(2):242–250. doi: 10.1104/pp.44.2.242. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Kortschak H. P., Hartt C. E., Burr G. O. Carbon Dioxide Fixation in Sugarcane Leaves. Plant Physiol. 1965 Mar;40(2):209–213. doi: 10.1104/pp.40.2.209. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. MOSES V., CALVIN M. Photosynthesis studies with tritiated water. Biochim Biophys Acta. 1959 Jun;33(2):297–312. doi: 10.1016/0006-3002(59)90117-9. [DOI] [PubMed] [Google Scholar]
  12. RABSON R., TOLBERTNE, KEARNEY P. C. Formation of serine and glyceric acid by the glycolate pathway. Arch Biochem Biophys. 1962 Jul;98:154–163. doi: 10.1016/0003-9861(62)90161-3. [DOI] [PubMed] [Google Scholar]
  13. SINHA S. K., COSSINS E. A. THE IMPORTANCE OF GLYOXYLATE IN AMINO ACID BIOSYNTHESIS IN PLANTS. Biochem J. 1965 Jul;96:254–261. doi: 10.1042/bj0960254. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Slack C. R., Hatch M. D. Comparative studies on the activity of carboxylases and other enzymes in relation to the new pathway of photosynthetic carbon dioxide fixation in tropical grasses. Biochem J. 1967 Jun;103(3):660–665. doi: 10.1042/bj1030660. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. TOLBERT N. E., CLAGETT C. O., BURRIS R. H. Products of the oxidation of glycolic acid and L-lactic acid by enzymes from tobacco leaves. J Biol Chem. 1949 Dec;181(2):905–914. [PubMed] [Google Scholar]
  16. Tanner W. H., Beevers H. Glycolic Acid Oxidase in Castor Bean Endosperm. Plant Physiol. 1965 Nov;40(6):971–976. doi: 10.1104/pp.40.6.971. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Tolbert N. E., Oeser A., Yamazaki R. K., Hageman R. H., Kisaki T. A survey of plants for leaf peroxisomes. Plant Physiol. 1969 Jan;44(1):135–147. doi: 10.1104/pp.44.1.135. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. ZELITCH I. The relationship of glycolic acid to respiration and photosynthesis in tobacco leaves. J Biol Chem. 1959 Dec;234:3077–3081. [PubMed] [Google Scholar]
  19. ZELITCH I. The role of glycolic acid oxidase in the respiration of leaves. J Biol Chem. 1958 Dec;233(6):1299–1303. [PubMed] [Google Scholar]
  20. Zelitch I. BIOCHEMICAL CONTROL OF STOMATAL OPENING IN LEAVES. Proc Natl Acad Sci U S A. 1961 Sep;47(9):1423–1433. doi: 10.1073/pnas.47.9.1423. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Zelitch I., Waggoner P. E. EFFECT OF CHEMICAL CONTROL OF STOMATA ON TRANSPIRATION AND PHOTOSYNTHESIS. Proc Natl Acad Sci U S A. 1962 Jul;48(7):1101–1108. doi: 10.1073/pnas.48.7.1101. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES