Abstract
A bacteriophage library displaying random decapeptides was used to characterize the binding preference of C-34, a monoclonal antibody originally raised against platelet-type von Willebrand disease platelets heterozygous for the mutation 23OWKQ (G --> V)233V234 in the alpha chain of glycoprotein Ib (GPIb alpha). Three rounds of biopanning C-34 against the library resulted in striking convergence upon the sequence WNWRYREYV. Since no portion of this sequence corresponds to a recognizable peptide sequence within human platelet GPIb alpha, it may be considered a "mimotope" of the naturally occurring C-34 epitope, presumably bearing similarity to it in three-dimensional structure. Synthetic AWNWRYREYV peptide preincubated with C-34 fully neutralized the ability of C-34 to inhibit platelet aggregation, with an IC50 of approximately 6 microg/ml. When biotinylated AWNWRYREYV was subsequently bioparmed against the original decapeptide library, the sole clone demonstrating inhibitory activity above background level in a functional platelet assay displayed the sequence RHVAWWRQGV, and chemically synthesized peptide fully inhibited ristocetin-induced aggregation, with an IC50 of 200-400 microg/ml. Synthesized RHVAWWKQGV peptide exerted only slight inhibition, whereas RHVAWWKQVV peptide showed potent inhibitory activity. Moreover, whereas synthesized wild-type 228YVWKQGVDVK237 GPIb alpha peptide was virtually without inhibitory activity, the 228YVWKQ(G -->V) 233VDVK237 peptide fully inhibited ristocetin-induced aggregation, with an IC50 of approximately 400 microg/ml. These studies raise the possibility of an intramolecular association of peptide regions within GPIb alpha that may play a role in the regulation of von Willebrand factor-dependent platelet aggregation.
Full text
PDF




Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Christian R. B., Zuckermann R. N., Kerr J. M., Wang L., Malcolm B. A. Simplified methods for construction, assessment and rapid screening of peptide libraries in bacteriophage. J Mol Biol. 1992 Oct 5;227(3):711–718. doi: 10.1016/0022-2836(92)90219-a. [DOI] [PubMed] [Google Scholar]
- Clemetson K. J., Clemetson J. M. Platelet GPIb-V-IX complex. Structure, function, physiology, and pathology. Semin Thromb Hemost. 1995;21(2):130–136. doi: 10.1055/s-2007-1000387. [DOI] [PubMed] [Google Scholar]
- Folgori A., Tafi R., Meola A., Felici F., Galfré G., Cortese R., Monaci P., Nicosia A. A general strategy to identify mimotopes of pathological antigens using only random peptide libraries and human sera. EMBO J. 1994 May 1;13(9):2236–2243. doi: 10.1002/j.1460-2075.1994.tb06501.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hobart M. J., Fernie B. A., Stanley K. K., Lachmann P. J. C6 epitope expression by an unrelated antisense cDNA clone: an inadvertent surface-simulation mimotope. Proc Biol Sci. 1993 May 22;252(1334):157–162. doi: 10.1098/rspb.1993.0060. [DOI] [PubMed] [Google Scholar]
- López J. A. The platelet glycoprotein Ib-IX complex. Blood Coagul Fibrinolysis. 1994 Feb;5(1):97–119. [PubMed] [Google Scholar]
- Macfarlane D. E., Stibbe J., Kirby E. P., Zucker M. B., Grant R. A., McPherson J. Letter: A method for assaying von Willebrand factor (ristocetin cofactor). Thromb Diath Haemorrh. 1975 Sep 30;34(1):306–308. [PubMed] [Google Scholar]
- Miller J. L., Castella A. Platelet-type von Willebrand's disease: characterization of a new bleeding disorder. Blood. 1982 Sep;60(3):790–794. [PubMed] [Google Scholar]
- Miller J. L., Cunningham D., Lyle V. A., Finch C. N. Mutation in the gene encoding the alpha chain of platelet glycoprotein Ib in platelet-type von Willebrand disease. Proc Natl Acad Sci U S A. 1991 Jun 1;88(11):4761–4765. doi: 10.1073/pnas.88.11.4761. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Miller J. L., Hustad K. O., Kupinski J. M., Lyle V. A., Kunicki T. J. Increased platelet sensitivity to ristocetin is predicted by the binding characteristics of a GPIb/IX determinant. Br J Haematol. 1990 Mar;74(3):313–319. doi: 10.1111/j.1365-2141.1990.tb02589.x. [DOI] [PubMed] [Google Scholar]
- Miller J. L., Kupinski J. M., Castella A., Ruggeri Z. M. von Willebrand factor binds to platelets and induces aggregation in platelet-type but not type IIB von Willebrand disease. J Clin Invest. 1983 Nov;72(5):1532–1542. doi: 10.1172/JCI111112. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Motti C., Nuzzo M., Meola A., Galfré G., Felici F., Cortese R., Nicosia A., Monaci P. Recognition by human sera and immunogenicity of HBsAg mimotopes selected from an M13 phage display library. Gene. 1994 Sep 2;146(2):191–198. doi: 10.1016/0378-1119(94)90292-5. [DOI] [PubMed] [Google Scholar]
- Murata M., Fukuyama M., Satoh K., Fujimura Y., Yoshioka A., Takahashi H., Handa M., Kawai Y., Watanabe K., Ikeda Y. Low shear stress can initiate von Willebrand factor-dependent platelet aggregation in patients with type IIB and platelet-type von Willebrand disease. J Clin Invest. 1993 Sep;92(3):1555–1558. doi: 10.1172/JCI116735. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pearson W. R. Rapid and sensitive sequence comparison with FASTP and FASTA. Methods Enzymol. 1990;183:63–98. doi: 10.1016/0076-6879(90)83007-v. [DOI] [PubMed] [Google Scholar]
- Pincus M. R., Dykes D. C., Carty R. P., Miller J. L. Conformational energy analysis of the substitution of Val for Gly 233 in a functional region of platelet GPIb alpha in platelet-type von Willebrand disease. Biochim Biophys Acta. 1991 Sep 23;1097(2):133–139. doi: 10.1016/0925-4439(91)90097-s. [DOI] [PubMed] [Google Scholar]
- Roth G. J. Developing relationships: arterial platelet adhesion, glycoprotein Ib, and leucine-rich glycoproteins. Blood. 1991 Jan 1;77(1):5–19. [PubMed] [Google Scholar]
- Russell S. D., Roth G. J. Pseudo-von Willebrand disease: a mutation in the platelet glycoprotein Ib alpha gene associated with a hyperactive surface receptor. Blood. 1993 Apr 1;81(7):1787–1791. [PubMed] [Google Scholar]
- Scott J. K. Discovering peptide ligands using epitope libraries. Trends Biochem Sci. 1992 Jul;17(7):241–245. doi: 10.1016/0968-0004(92)90401-t. [DOI] [PubMed] [Google Scholar]
- Scott J. K., Smith G. P. Searching for peptide ligands with an epitope library. Science. 1990 Jul 27;249(4967):386–390. doi: 10.1126/science.1696028. [DOI] [PubMed] [Google Scholar]
- Smith G. P., Scott J. K. Libraries of peptides and proteins displayed on filamentous phage. Methods Enzymol. 1993;217:228–257. doi: 10.1016/0076-6879(93)17065-d. [DOI] [PubMed] [Google Scholar]
- Stoute J. A., Ballou W. R., Kolodny N., Deal C. D., Wirtz R. A., Lindler L. E. Induction of humoral immune response against Plasmodium falciparum sporozoites by immunization with a synthetic peptide mimotope whose sequence was derived from screening a filamentous phage epitope library. Infect Immun. 1995 Mar;63(3):934–939. doi: 10.1128/iai.63.3.934-939.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Takahashi H., Murata M., Moriki T., Anbo H., Furukawa T., Nikkuni K., Shibata A., Handa M., Kawai Y., Watanabe K. Substitution of Val for Met at residue 239 of platelet glycoprotein Ib alpha in Japanese patients with platelet-type von Willebrand disease. Blood. 1995 Feb 1;85(3):727–733. [PubMed] [Google Scholar]
- Takahashi H. Studies on the pathophysiology and treatment of von Willebrand's disease. IV. Mechanism of increased ristocetin-induced platelet aggregation in von Willebrand's disease. Thromb Res. 1980 Sep 15;19(6):857–867. doi: 10.1016/0049-3848(80)90013-4. [DOI] [PubMed] [Google Scholar]
- Weiss H. J., Meyer D., Rabinowitz R., Pietu G., Girma J. P., Vicic W. J., Rogers J. Pseudo-von Willebrand's disease. An intrinsic platelet defect with aggregation by unmodified human factor VIII/von Willebrand factor and enhanced adsorption of its high-molecular-weight multimers. N Engl J Med. 1982 Feb 11;306(6):326–333. doi: 10.1056/NEJM198202113060603. [DOI] [PubMed] [Google Scholar]