Abstract
The flash-induced absorbance changes at 515 nanometers has been studied in chloroplasts and in digitonin subchloroplast particles of lettuce. The effect of various conditions and uncouplers was tested on the decay kinetics of this absorbance change and on ATP formation in the presence of phenazine methosulphate, either by continuous or flash illumination. It has been found that in chloroplasts, carbonyl cyanide m-chloromethoxyphenylhydrazone and nigericin in the presence of K+ accelerate the decay of the 515 change and inhibit ATP formation. However, under a variety of conditions the rate of decay of the 515 absorbance change was found to be unrelated to ATP formation. Preillumination, addition of valinomycin in the presence of K+, addition of Na+, or divalent cations accelerate the decay of the 515 absorbance change markedly but have no effect on ATP formation. Addition of phosphorylation reagents has no effect on the decay rate beyond that obtained by Mg2+ and inorganic phosphate. NH4Cl, and to some extent atebrin, while inhibiting ATP formation, do not affect the decay of the 515 absorbance change.
In digitonin subchloroplast particles the decay kinetics of the absorbance change resemble that of chloroplasts, but the magnitude of the change is smaller. The pH change in this preparation is reduced much more than the 515 absorbance change.
According to the chemiosmotic hypothesis, the sum of ΔE(membrane potential) and ΔpH is the driving force for ATP formation. The lack of an increase in ΔE in digitonin subchloroplast particles, which are practically devoid of ΔpH and have a normal ATP-forming activity, is inconsistent with the chemiosmotic hypothesis.
Full text
PDF






Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- AVRON M. Photophosphorylation by swiss-chard chloroplasts. Biochim Biophys Acta. 1960 May 20;40:257–272. doi: 10.1016/0006-3002(60)91350-0. [DOI] [PubMed] [Google Scholar]
- Anderson J. M., Boardman N. K. Fractionation of the photochemical systems of photosynthesis. I. Chlorophyll contents and photochemical activities of particles isolated from spinach chloroplasts. Bibl Laeger. 1966 Mar 14;112(3):403–421. doi: 10.1016/0926-6585(66)90244-5. [DOI] [PubMed] [Google Scholar]
- Arnon D. I. COPPER ENZYMES IN ISOLATED CHLOROPLASTS. POLYPHENOLOXIDASE IN BETA VULGARIS. Plant Physiol. 1949 Jan;24(1):1–15. doi: 10.1104/pp.24.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chance B., Strehler B. Effects of Oxygen and Red Light upon the Absorption of Visible Light in Green Plants. Plant Physiol. 1957 Nov;32(6):536–548. doi: 10.1104/pp.32.6.536. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dilley R. A., Vernon L. P. Ion and water transport processes related to the light-dependent shrinkage of spinach chloroplasts. Arch Biochem Biophys. 1965 Aug;111(2):365–375. doi: 10.1016/0003-9861(65)90198-0. [DOI] [PubMed] [Google Scholar]
- Duysens L. N. Reversible Changes in the Absorption Spectrum of Chlorella upon Irradiation. Science. 1954 Aug 27;120(3113):353–354. doi: 10.1126/science.120.3113.353. [DOI] [PubMed] [Google Scholar]
- Emrich H. M., Junge W., Witt H. T. Further evidcence for an optical response of chloroplast bulk pigments to a light induced electrical field in photosynthesis. Z Naturforsch B. 1969 Sep;24(9):1144–1146. doi: 10.1515/znb-1969-0912. [DOI] [PubMed] [Google Scholar]
- Henderson P. J., McGivan J. D., Chappell J. B. The action of certain antibiotics on mitochondrial, erythrocyte and artificial phospholipid membranes. The role of induced proton permeability. Biochem J. 1969 Feb;111(4):521–535. doi: 10.1042/bj1110521. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hildreth W. W., Avron M., Chance B. Laser activation of rapid absorption changes in spinach chloroplasts and chlorella. Plant Physiol. 1966 Jun;41(6):983–991. doi: 10.1104/pp.41.6.983. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hind G. Light-induced changes in cytochrome b-559 in spinach chloroplasts. Photochem Photobiol. 1968 Apr;7(4):369–375. doi: 10.1111/j.1751-1097.1968.tb08025.x. [DOI] [PubMed] [Google Scholar]
- Jackson J. B., Crofts A. R. The high energy state in chromatophores from Rhodopseudomonas spheroides. FEBS Lett. 1969 Aug;4(3):185–189. doi: 10.1016/0014-5793(69)80230-9. [DOI] [PubMed] [Google Scholar]
- Jagendorf A. T. Acid-base transitions and phosphorylation by chloroplasts. Fed Proc. 1967 Sep;26(5):1361–1369. [PubMed] [Google Scholar]
- Jagendorf A. T., Uribe E. Photophosphorylation and the chemi-osmotic hypothesis. Brookhaven Symp Biol. 1966;19:215–245. [PubMed] [Google Scholar]
- Junge W., Witt H. T. On the ion transport system of photosynthesis--investigations on a molecular level. Z Naturforsch B. 1968 Feb;23(2):244–254. doi: 10.1515/znb-1968-0222. [DOI] [PubMed] [Google Scholar]
- McCarty R. E. Relation of photophosphorylation to hydrogen ion transport. Biochem Biophys Res Commun. 1968 Jul 11;32(1):37–43. doi: 10.1016/0006-291x(68)90422-1. [DOI] [PubMed] [Google Scholar]
- McCarty R. E. The uncoupling of photophosphorylation by valinomycin and ammon-ium chloride. J Biol Chem. 1969 Aug 25;244(16):4292–4298. [PubMed] [Google Scholar]
- Montal M., Chance B., Lee C. P., Azzi A. Effect of ion-transporting antibiotics on the energy-linked reactions of submitochondrial particles. Biochem Biophys Res Commun. 1969 Jan 6;34(1):104–110. doi: 10.1016/0006-291x(69)90535-x. [DOI] [PubMed] [Google Scholar]
- NEUMANN J., JAGENDORF A. T. LIGHT-INDUCED PH CHANGES RELATED PHOSPHORYLATION BY CHLOROPLASTS. Arch Biochem Biophys. 1964 Jul;107:109–119. doi: 10.1016/0003-9861(64)90276-0. [DOI] [PubMed] [Google Scholar]
- NISHIMURA M., ITO T., CHANCE B. Studies on bacterial photophosphorylation. III. A sensitive and rapid method of determination of photophosphorylation. Biochim Biophys Acta. 1962 May 7;59:177–182. [PubMed] [Google Scholar]
- Nelson N., Drechsler Z., Neumann J. Photophosphorylation in digitonin subchloroplast particles. Absence of a light-induced pH shift. J Biol Chem. 1970 Jan 10;245(1):143–151. [PubMed] [Google Scholar]
- Nishimura M., Pressman B. C. Effects of ionophorous antibiotics on the light-induced internal and external hydrogen ion changes and phosphorylation in bacterial chromatophores. Biochemistry. 1969 Apr;8(4):1360–1370. doi: 10.1021/bi00832a009. [DOI] [PubMed] [Google Scholar]
- Pratt L. H., Bishop N. I. The 520-nm light-induced absorbance change in photosynthetic mutants of Scenedesmus. Biochim Biophys Acta. 1968 Oct 1;162(3):369–379. doi: 10.1016/0005-2728(68)90123-0. [DOI] [PubMed] [Google Scholar]
- Rubinstein D. Photoinduced absorption changes at 520 nm in Chlorella and their relationship to the two-pigment system of photosynthesis. Biochim Biophys Acta. 1965 Sep 27;109(1):41–44. doi: 10.1016/0926-6585(65)90088-9. [DOI] [PubMed] [Google Scholar]
- Rumberg B., Siggel U. Quantitative Zusammenhänge zwischen Chlorophyll-b-Reaktion, Elektronentransport und Phosphorylierung bei der Photosynthese. Z Naturforsch B. 1968 Feb;23(2):239–244. [PubMed] [Google Scholar]
- Shavit N., Avron M. The relation of electron transport and photophosphorylation to conformational changes in chloroplasts. Biochim Biophys Acta. 1967 May 9;131(3):516–525. doi: 10.1016/0005-2728(67)90011-4. [DOI] [PubMed] [Google Scholar]
- Shavit N., Dilley R. A., San Pietro A. Ion translocation in isolated chloroplasts. Uncoupling of photophosphorylation and translocation of K+ and H+ ions induced by Nigericin. Biochemistry. 1968 Jun;7(6):2356–2363. doi: 10.1021/bi00846a043. [DOI] [PubMed] [Google Scholar]
- Shavit N., Thore A., Keister D. L., San Pietro A. Inhibition by nigericin of the light-induced pH change in Rhodospirillum rubrum chromatophores. Proc Natl Acad Sci U S A. 1968 Mar;59(3):917–922. doi: 10.1073/pnas.59.3.917. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tupper J. T., Tedeschi H. Mitochondrial membrane potentials measured with microelectrodes: probable ionic basis. Science. 1969 Dec 19;166(3912):1539–1540. doi: 10.1126/science.166.3912.1539. [DOI] [PubMed] [Google Scholar]
- Vredenberg W. J. Enhancement of the dark reconstitution of photosynthetic reaction center 2 by nigericin and CCCP. Biochim Biophys Acta. 1969 Sep 16;189(1):129–132. doi: 10.1016/0005-2728(69)90234-5. [DOI] [PubMed] [Google Scholar]
- Witt H. T., Rumberg B., Schmidt-Mende P., Siggel U., Skerra B., Vater J., Weikard J. On the analysis of photosynthesis by flashlight techniques. Angew Chem Int Ed Engl. 1965 Oct;4(10):799–819. doi: 10.1002/anie.196507991. [DOI] [PubMed] [Google Scholar]
