Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1970 Aug;46(2):273–276. doi: 10.1104/pp.46.2.273

Investigations of Canavanine Biochemistry in the Jack Bean Plant, Canavalia ensiformia (L.) DC

I. Canavanine Utilization in the Developing Plant 1

Gerald A Rosenthal a
PMCID: PMC396577  PMID: 16657449

Abstract

An ontogenetic study of the canavanine and soluble protein pools in the developing jack bean plant, Canavalia ensiformis (L.) DC., was conducted. Evidence was presented which clearly established the conversion of canavanine to canaline and urea as the principal pathway of canavanine utilization. The catabolic reactions of certain bacteria involving the formation of guanidine or hydroxyguanidine from canavanine are not operative in the cotyledons of jack bean. Evidence was obtained which indicates that a second, minor reaction is functioning in canavanine degradation.

Full text

PDF
273

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BELL E. A. Canavanine and related compounds in Leguminosae. Biochem J. 1958 Dec;70(4):617–619. doi: 10.1042/bj0700617. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. BELL E. A. Canavanine in the Leguminosae. Biochem J. 1960 Jun;75:618–620. doi: 10.1042/bj0750618. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Damodaran M., Narayanan K. G. A comparative study of arginase and canavanase. Biochem J. 1940 Nov;34(10-11):1449–1459. doi: 10.1042/bj0341449. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Eggleton P., Elsden S. R., Gough N. The estimation of creatine and of diacetyl. Biochem J. 1943;37(5):526–529. doi: 10.1042/bj0370526. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. FEARON W. R., BELL E. A. Canavanine: detection and occurrence in Colutea arborescens. Biochem J. 1955 Feb;59(2):221–224. doi: 10.1042/bj0590221. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Hunninghake D., Grisolia S. A sensitive and convenient micromethod for estimation of urea, citrulline, and carbamyl derivatives. Anal Biochem. 1966 Aug;16(2):200–205. doi: 10.1016/0003-2697(66)90147-3. [DOI] [PubMed] [Google Scholar]
  7. KALYANKAR G. D., IKAWA M., SNELL E. E. The enzymatic cleavage of canavanine to homoserine and hydroxyguanidine. J Biol Chem. 1958 Nov;233(5):1175–1178. [PubMed] [Google Scholar]
  8. KIHARA H., SNELL E. E. The enzymatic cleavage of canavanine to O-ureidohomoserine and ammonia. J Biol Chem. 1957 May;226(1):485–495. [PubMed] [Google Scholar]
  9. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  10. MAAS W. K. Studies on repression of arginine biosynthesis in Escherichia coli. Cold Spring Harb Symp Quant Biol. 1961;26:183–191. doi: 10.1101/sqb.1961.026.01.023. [DOI] [PubMed] [Google Scholar]
  11. ROBBINS K. C., SHIELDS J. Partial purification of bovine liver arginase. Arch Biochem Biophys. 1956 May;62(1):55–62. doi: 10.1016/0003-9861(56)90086-8. [DOI] [PubMed] [Google Scholar]
  12. WALKER J. B. An enzymatic reaction between canavanine and fumarate. J Biol Chem. 1953 Sep;204(1):139–146. [PubMed] [Google Scholar]
  13. WALKER J. B. Biosynthesis of arginine from canavanine and ornithine in kidney. J Biol Chem. 1956 Jan;218(1):549–556. [PubMed] [Google Scholar]
  14. WALKER J. B. Biosynthesis of canavaninosuccinic acid from canavanine and fumarate in kidney. Arch Biochem Biophys. 1955 Nov;59(1):233–245. doi: 10.1016/0003-9861(55)90480-x. [DOI] [PubMed] [Google Scholar]
  15. WALKER J. B. Further studies on the mechanism of transamidinase action: transamidination in Streptomyces griseus. J Biol Chem. 1958 Mar;231(1):1–9. [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES