Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1970 Aug;46(2):294–298. doi: 10.1104/pp.46.2.294

The Fractionation of Transfer Ribonucleic Acid from Roots of Pea Seedlings 1

Larry N Vanderhoef a,2, Joe L Key a,3
PMCID: PMC396582  PMID: 16657453

Abstract

Isoaccepting transfer RNA species for several amino acids were fractionated by reverse phase column chromatography. Transfer RNA from dividing cells of pea (Pisum sativum) root was compared to that from nondividing cells, and no relative quantitative or qualitative differences were noted for the transfer RNA species for leucine, lysine, proline, threonine, methionine, serine, and phenylalanine. However, certain artifactual differences for serine and phenylalanine were noted. Quantitative differences were observed in tyrosyl-transfer RNA's. Ribonuclease action on tRNA did not contribute to the tRNA species observed.

Full text

PDF
294

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anderson M. B., Cherry J. H. Differences in leucyl-transfer rna's and synthetase in soybean seedlings. Proc Natl Acad Sci U S A. 1969 Jan;62(1):202–209. doi: 10.1073/pnas.62.1.202. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Axel R., Weinstein B., Farber E. Patterns of transfer RNA in normal rat liver and during hepatic carcinogenesis. Proc Natl Acad Sci U S A. 1967 Sep;58(3):1255–1260. doi: 10.1073/pnas.58.3.1255. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Barnett W. E., Brown D. H., Epler J. L. Mitochondrial-specific aminoacyl-RNA synthetases. Proc Natl Acad Sci U S A. 1967 Jun;57(6):1775–1781. doi: 10.1073/pnas.57.6.1775. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Barnett W. E., Brown D. H. Mitochondrial transfer ribonucleic acids. Proc Natl Acad Sci U S A. 1967 Feb;57(2):452–458. doi: 10.1073/pnas.57.2.452. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Britten R. J., Davidson E. H. Gene regulation for higher cells: a theory. Science. 1969 Jul 25;165(3891):349–357. doi: 10.1126/science.165.3891.349. [DOI] [PubMed] [Google Scholar]
  6. Buck C. A., Nass M. M. Differences between mitochondrial and cytoplasmic transfer RNA and aminoacyl transfer RNA synthetases from rat liver. Proc Natl Acad Sci U S A. 1968 Jul;60(3):1045–1052. doi: 10.1073/pnas.60.3.1045. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. EIDLIC L., NEIDHARDT F. C. PROTEIN AND NUCLEIC ACID SYNTHESIS IN TWO MUTANTS OF ESCHERICHIA COLI WITH TEMPERATURE-SENSITIVE AMINOACYL RIBONUCLEIC ACID SYNTHETASES. J Bacteriol. 1965 Mar;89:706–711. doi: 10.1128/jb.89.3.706-711.1965. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. FANGMAN W. L., NEIDHARDT F. C. PROTEIN AND RIBONUCLEIC ACID SYNTHESIS IN A MUTANT OF ESCHERICHIA COLI WITH AN ALTERED AMINOACYL RIBONUCLEIC ACID SYNTHETASE. J Biol Chem. 1964 Jun;239:1844–1847. [PubMed] [Google Scholar]
  9. Freundlich M. Valyl-Transfer RNA: Role in Repression of the Isoleucine-Valine Enzymes in Escherichia coli. Science. 1967 Aug 18;157(3790):823–825. doi: 10.1126/science.157.3790.823-a. [DOI] [PubMed] [Google Scholar]
  10. Holland J. J., Taylor M. W., Buck C. A. Chromatographic differences between tyrosyl transfer RNA from different mammalian cells. Proc Natl Acad Sci U S A. 1967 Dec;58(6):2437–2444. doi: 10.1073/pnas.58.6.2437. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Hung P. P., Overby L. R. Alteration in function of transfer ribonucleic acid of Escherichia coli after infection with phage Q beta. J Biol Chem. 1968 Nov 10;243(21):5525–5531. [PubMed] [Google Scholar]
  12. JACOB F., MONOD J. Genetic regulatory mechanisms in the synthesis of proteins. J Mol Biol. 1961 Jun;3:318–356. doi: 10.1016/s0022-2836(61)80072-7. [DOI] [PubMed] [Google Scholar]
  13. KIRBY K. S. ISOLATION AND CHARACTERIZATION OF RIBOSOMAL RIBONUCLEIC ACID. Biochem J. 1965 Jul;96:266–269. doi: 10.1042/bj0960266. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Kan J., Kano-Sueoka T., Sueoka N. Characterization of leucine transfer ribonucleic acid in Escherichia coli following infection with bacteriophage T2. J Biol Chem. 1968 Nov 10;243(21):5584–5590. [PubMed] [Google Scholar]
  15. Kaneko I., Doi R. H. Alteration of valyl-sRNA during sporulation of bacillus subtilis. Proc Natl Acad Sci U S A. 1966 Mar;55(3):564–571. doi: 10.1073/pnas.55.3.564. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Kano-Sueoka T., Sueoka N. Characterization of a modified leucyl-tRNA of Escherichia coli after bacteriophage T2 infection. J Mol Biol. 1968 Nov 14;37(3):475–491. doi: 10.1016/0022-2836(68)90116-2. [DOI] [PubMed] [Google Scholar]
  17. Lazzarini R. A. Differences in lysine-sRNA from spore and vegetative cells of Bacillus subtillis. Proc Natl Acad Sci U S A. 1966 Jul;56(1):185–190. doi: 10.1073/pnas.56.1.185. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Lee J. C., Ingram V. M. Erythrocyte transfer RNA: change during chick development. Science. 1967 Dec 8;158(3806):1330–1332. doi: 10.1126/science.158.3806.1330. [DOI] [PubMed] [Google Scholar]
  19. MOUSTAFA E. PURIFICATION AND PROPERTIES OF LYSYL- AND METHIONYL-SOLUBLE RIBONUCLEIC ACID SYNTHETASES FROM WHEAT GERM. Biochim Biophys Acta. 1964 Nov 15;91:421–426. doi: 10.1016/0926-6550(64)90072-6. [DOI] [PubMed] [Google Scholar]
  20. Neidhardt F. C. Roles of amino acid activating enzymes in cellular physiology. Bacteriol Rev. 1966 Dec;30(4):701–719. doi: 10.1128/br.30.4.701-719.1966. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. SCHLESINGER S., MAGASANIK B. EFFECT OF ALPHA-METHYLHISTIDINE ON THE CONTROL OF HISTIDINE SYNTHESIS. J Mol Biol. 1964 Sep;9:670–682. doi: 10.1016/s0022-2836(64)80174-1. [DOI] [PubMed] [Google Scholar]
  22. STENT G. S. THE OPERON: ON ITS THIRD ANNIVERSARY. MODULATION OF TRANSFER RNA SPECIES CAN PROVIDE A WORKABLE MODEL OF AN OPERATOR-LESS OPERON. Science. 1964 May 15;144(3620):816–820. doi: 10.1126/science.144.3620.816. [DOI] [PubMed] [Google Scholar]
  23. Silbert D. F., Fink G. R., Ames B. N. Histidine regulatory mutants in Salmonella typhimurium 3. A class of regulatory mutants deficient in tRNA for histidine. J Mol Biol. 1966 Dec 28;22(2):335–347. doi: 10.1016/0022-2836(66)90136-7. [DOI] [PubMed] [Google Scholar]
  24. Strehler B. L., Hendley D. D., Hirsch G. P. Evidence of a codon restriction hypothesis of cellular differentiation: multiplicity of mammalian leucyl-sRNA-specific synthetases and tissue-specific deficiency in an alanyl-sRNA synthetase. Proc Natl Acad Sci U S A. 1967 Jun;57(6):1751–1758. doi: 10.1073/pnas.57.6.1751. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Subak-Sharpe H., Shepherd W. M., Hay J. Studies on sRNA coded by herpes virus. Cold Spring Harb Symp Quant Biol. 1966;31:583–594. doi: 10.1101/sqb.1966.031.01.076. [DOI] [PubMed] [Google Scholar]
  26. Suyama Y., Eyer J. Leucyl tRNA and leucyl tRNA synthetase in mitochondria of Tetrahymena pyriformis. Biochem Biophys Res Commun. 1967 Sep 7;28(5):746–751. doi: 10.1016/0006-291x(67)90379-8. [DOI] [PubMed] [Google Scholar]
  27. Vold B. S., Sypherd P. S. Modification in transfer RNA during the differentiation of wheat seedlings. Proc Natl Acad Sci U S A. 1968 Feb;59(2):453–458. doi: 10.1073/pnas.59.2.453. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Waters L. C., Novelli G. D. A new change in leucine transfer RNA observed in Escherichia coli infected with bacteriophage T2. Proc Natl Acad Sci U S A. 1967 Apr;57(4):979–985. doi: 10.1073/pnas.57.4.979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Waters L. C., Novelli G. D. The early change in E. coli leucine tRNA after infection with bacteriophage T2. Biochem Biophys Res Commun. 1968 Sep 30;32(6):971–976. doi: 10.1016/0006-291x(68)90123-x. [DOI] [PubMed] [Google Scholar]
  30. Weiss J. F., Kelmers A. D. A new chromatographic system for increased resolution of transfer ribonucleic acids. Biochemistry. 1967 Aug;6(8):2507–2513. doi: 10.1021/bi00860a030. [DOI] [PubMed] [Google Scholar]
  31. Weiss S. B., Hsu W. T., Foft J. W., Scherberg N. H. Transfer RNA coded by the T4 bacteriophage genome. Proc Natl Acad Sci U S A. 1968 Sep;61(1):114–121. doi: 10.1073/pnas.61.1.114. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Williams L. S., Freundlich M. Role of valine transfer RNA in control of RNA synthesis in Escherichia coli. Biochim Biophys Acta. 1969 Apr 22;179(2):515–517. doi: 10.1016/0005-2787(69)90064-1. [DOI] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES