Abstract
The amino acid sequences of a number of closely related proteins ("napin") isolated from Brassica napus were determined by mass spectrometry without prior separation into individual components. Some of these proteins correspond to those previously deduced (napA, BngNAP1, and gNa), chiefly from DNA sequences. Others were found to differ to a varying extent (BngNAP1', BngNAP1A, BngNAP1B, BngNAP1C, gNa', and gNaA). The short chains of gNa and gNa' and of BngNAP1 and BngNAP1' differ by the replacement of N-terminal proline by pyroglutamic acid; the long chains of gNaA and BngNAP1B contain a six amino acid stretch, MQGQQM, which is present in gNa (according to its DNA sequence) but absent from BngNAP1 and BngNAP1C. These alternations of sequences between napin isoforms are most likely due to homologous recombination of the genetic material, but some of the changes may also be due to RNA editing. The amino acids that follow the untruncated C termini of those napin chains for which the DNA sequences are known (napA, BngNAP1, and gNa) are aromatic amino acids. This suggests that the processing of the proprotein leading to the C termini of the two chains is due to the action of a protease that specifically cleaves a G/S-F/Y/W bond.
Full text
PDF





Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Baszczynski C. L., Fallis L. Isolation and nucleotide sequence of a genomic clone encoding a new Brassica napus napin gene. Plant Mol Biol. 1990 Apr;14(4):633–635. doi: 10.1007/BF00027511. [DOI] [PubMed] [Google Scholar]
- Cattaneo R. Different types of messenger RNA editing. Annu Rev Genet. 1991;25:71–88. doi: 10.1146/annurev.ge.25.120191.000443. [DOI] [PubMed] [Google Scholar]
- Chan L. RNA editing: exploring one mode with apolipoprotein B mRNA. Bioessays. 1993 Jan;15(1):33–41. doi: 10.1002/bies.950150106. [DOI] [PubMed] [Google Scholar]
- Crouch M. L., Tenbarge K. M., Simon A. E., Ferl R. cDNA clones for Brassica napus seed storage proteins: evidence from nucleotide sequence analysis that both subunits of napin are cleaved from a precursor polypeptide. J Mol Appl Genet. 1983;2(3):273–283. [PubMed] [Google Scholar]
- Desrosiers R., Tanguay R. M. Methylation of Drosophila histones at proline, lysine, and arginine residues during heat shock. J Biol Chem. 1988 Apr 5;263(10):4686–4692. [PubMed] [Google Scholar]
- Ericson M. L., Murén E., Gustavsson H. O., Josefsson L. G., Rask L. Analysis of the promoter region of napin genes from Brassica napus demonstrates binding of nuclear protein in vitro to a conserved sequence motif. Eur J Biochem. 1991 May 8;197(3):741–746. doi: 10.1111/j.1432-1033.1991.tb15966.x. [DOI] [PubMed] [Google Scholar]
- Ericson M. L., Rödin J., Lenman M., Glimelius K., Josefsson L. G., Rask L. Structure of the rapeseed 1.7 S storage protein, napin, and its precursor. J Biol Chem. 1986 Nov 5;261(31):14576–14581. [PubMed] [Google Scholar]
- Gerace L. Nuclear export signals and the fast track to the cytoplasm. Cell. 1995 Aug 11;82(3):341–344. doi: 10.1016/0092-8674(95)90420-4. [DOI] [PubMed] [Google Scholar]
- Gerber H. P., Seipel K., Georgiev O., Höfferer M., Hug M., Rusconi S., Schaffner W. Transcriptional activation modulated by homopolymeric glutamine and proline stretches. Science. 1994 Feb 11;263(5148):808–811. doi: 10.1126/science.8303297. [DOI] [PubMed] [Google Scholar]
- Hara-Nishimura I., Inoue K., Nishimura M. A unique vacuolar processing enzyme responsible for conversion of several proprotein precursors into the mature forms. FEBS Lett. 1991 Dec 2;294(1-2):89–93. doi: 10.1016/0014-5793(91)81349-d. [DOI] [PubMed] [Google Scholar]
- Herbert A., Lowenhaupt K., Spitzner J., Rich A. Chicken double-stranded RNA adenosine deaminase has apparent specificity for Z-DNA. Proc Natl Acad Sci U S A. 1995 Aug 1;92(16):7550–7554. doi: 10.1073/pnas.92.16.7550. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hiesel R., Wissinger B., Schuster W., Brennicke A. RNA editing in plant mitochondria. Science. 1989 Dec 22;246(4937):1632–1634. doi: 10.1126/science.2480644. [DOI] [PubMed] [Google Scholar]
- Johnson R. S., Biemann K. The primary structure of thioredoxin from Chromatium vinosum determined by high-performance tandem mass spectrometry. Biochemistry. 1987 Mar 10;26(5):1209–1214. doi: 10.1021/bi00379a001. [DOI] [PubMed] [Google Scholar]
- Josefsson L. G., Lenman M., Ericson M. L., Rask L. Structure of a gene encoding the 1.7 S storage protein, napin, from Brassica napus. J Biol Chem. 1987 Sep 5;262(25):12196–12201. [PubMed] [Google Scholar]
- Karas M., Hillenkamp F. Laser desorption ionization of proteins with molecular masses exceeding 10,000 daltons. Anal Chem. 1988 Oct 15;60(20):2299–2301. doi: 10.1021/ac00171a028. [DOI] [PubMed] [Google Scholar]
- Kaufmann R., Spengler B., Lützenkirchen F. Mass spectrometric sequencing of linear peptides by product-ion analysis in a reflectron time-of-flight mass spectrometer using matrix-assisted laser desorption ionization. Rapid Commun Mass Spectrom. 1993 Oct;7(10):902–910. doi: 10.1002/rcm.1290071010. [DOI] [PubMed] [Google Scholar]
- Lawrence M. C., Izard T., Beuchat M., Blagrove R. J., Colman P. M. Structure of phaseolin at 2.2 A resolution. Implications for a common vicilin/legumin structure and the genetic engineering of seed storage proteins. J Mol Biol. 1994 May 20;238(5):748–776. doi: 10.1006/jmbi.1994.1333. [DOI] [PubMed] [Google Scholar]
- Lönnerdal B., Janson J. C. Studies on Brassica seed proteins. I. The low molecular weight proteins in rapeseed. Isolation and characterization. Biochim Biophys Acta. 1972 Aug 31;278(1):175–183. [PubMed] [Google Scholar]
- Monsalve R. I., Menéndez-Arias L., López-Otín C., Rodríguez R. Beta-turns as structural motifs for the proteolytic processing of seed proteins. FEBS Lett. 1990 Apr 24;263(2):209–212. doi: 10.1016/0014-5793(90)81375-x. [DOI] [PubMed] [Google Scholar]
- Monsalve R. I., Villalba M., López-Otín C., Rodríguez R. Structural analysis of the small chain of the 2S albumin, napin nIII, from rapeseed. Chemical and spectroscopic evidence of an intramolecular bond formation. Biochim Biophys Acta. 1991 Jun 24;1078(2):265–272. doi: 10.1016/0167-4838(91)90568-k. [DOI] [PubMed] [Google Scholar]
- Raynal M., Depigny D., Grellet F., Delseny M. Characterization and evolution of napin-encoding genes in radish and related crucifers. Gene. 1991 Mar 1;99(1):77–86. doi: 10.1016/0378-1119(91)90036-b. [DOI] [PubMed] [Google Scholar]
- Sato K., Asada T., Ishihara M., Kunihiro F., Kammei Y., Kubota E., Costello C. E., Martin S. A., Scoble H. A., Biemann K. High-performance tandem mass spectrometry: calibration and performance of linked scans of a four-sector instrument. Anal Chem. 1987 Jul 1;59(13):1652–1659. doi: 10.1021/ac00140a016. [DOI] [PubMed] [Google Scholar]
- Schneuwly S., Kuroiwa A., Baumgartner P., Gehring W. J. Structural organization and sequence of the homeotic gene Antennapedia of Drosophila melanogaster. EMBO J. 1986 Apr;5(4):733–739. doi: 10.1002/j.1460-2075.1986.tb04275.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Scofield S. R., Crouch M. L. Nucleotide sequence of a member of the napin storage protein family from Brassica napus. J Biol Chem. 1987 Sep 5;262(25):12202–12208. [PubMed] [Google Scholar]
- Scott J. A place in the world for RNA editing. Cell. 1995 Jun 16;81(6):833–836. doi: 10.1016/0092-8674(95)90002-0. [DOI] [PubMed] [Google Scholar]