Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1970 Nov;46(5):660–665. doi: 10.1104/pp.46.5.660

Changes in Nucleic Acids in Phytochrome-dependent Elongation of the Alaska Pea Epicotyl

George E Okoloko a,1, Lowell N Lewis a, Brian R Reid a
PMCID: PMC396657  PMID: 16657526

Abstract

Red light, which produces the physiologically active form of phytochrome (Pfr), inhibited epicotyl elongation in intact dark-grown Alaska pea seedlings. This red light response was detectable 3 hours after the light treatment and became pronounced after 5 hours. The growth inhibition was completely reversed by far red light applied immediately after the red or by pretreatment of the seedlings with the plant hormone gibberellin A3.

Comparison of the total 32P-labeled nucleic acids from control and red light-treated Alaska pea epicotyls on methylated albumin-kieselguhr columns revealed a marked alteration of the pattern of nucleic acid synthesis in this plant material with little or no effect on total isotope incorporation into nucleic acids. A single 5-minute red light perturbation caused a 2-fold stimulation of 32P incorporation into the tRNA fraction while, simultaneously, 32P incorporation into tenaciously bound RNA was reduced to 50% of control levels. Red light treatment had no effect on 32P incorporation into the DNA-RNA, rRNA, or mRNA fractions. Far red light reversed the effect of red light on tRNA synthesis but did not restore tenaciously bound RNA levels to the control value. Gibberellin A3 treatment did not cause reversal of any of the red light effects on RNA synthesis.

These light-induced changes in nucleic acids were measurable before any changes in the physiological response (epicotyl elongation) could be detected. These results are consistent with a phytochrome-mediated differential gene activation mechanism in the Alaska pea epicotyl elongation system.

Full text

PDF
660

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. CAVALIERI L. F., NEMCHIN R. G. THE MODE OF INTERACTION OF ACTINOMYCIN D WITH DEOXYRIBONUCLEIC ACID. Biochim Biophys Acta. 1964 Aug 12;87:641–652. doi: 10.1016/0926-6550(64)90282-8. [DOI] [PubMed] [Google Scholar]
  2. Cherry J. H., Chroboczek H., Carpenter W. J., Richmond A. Nucleic Acid Metabolism in Peanut Cotyledons. Plant Physiol. 1965 May;40(3):582–587. doi: 10.1104/pp.40.3.582. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Correll D. L., Steers E., Jr, Towe K. M., Shropshire W., Jr Phytochrome in etiolated annual rye. IV. Physical and chemical characterization of phytochrome. Biochim Biophys Acta. 1968 Sep 10;168(1):46–57. doi: 10.1016/0005-2795(68)90232-8. [DOI] [PubMed] [Google Scholar]
  4. Galston A. W. Microspectrophotometric evidence for phytochrome in plant nuclei. Proc Natl Acad Sci U S A. 1968 Oct;61(2):454–460. doi: 10.1073/pnas.61.2.454. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. HAYASHI M., HAYASHI M. N., SPIEGELMAN S. RESTRICTION OF IN VIVO GENETIC TRANSCRIPTION TO ONE OF THE COMPLEMENTARY STRANDS OF DNA. Proc Natl Acad Sci U S A. 1963 Oct;50:664–672. doi: 10.1073/pnas.50.4.664. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Hendricks S. B., Borthwick H. A. The function of phytochrome in regulation of plant growth. Proc Natl Acad Sci U S A. 1967 Nov;58(5):2125–2130. doi: 10.1073/pnas.58.5.2125. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Holm R. E., Abeles F. B. Abscission: the role of RNA synthesis. Plant Physiol. 1967 Aug;42(8):1094–1102. doi: 10.1104/pp.42.8.1094. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. INGLE J., KEY J. L., HOLM R. E. DEMONSTRATION AND CHARACTERIZATION OF A DNA-LIKE RNA IN EXCISED PLANT TISSUE. J Mol Biol. 1965 Apr;11:730–746. doi: 10.1016/s0022-2836(65)80031-6. [DOI] [PubMed] [Google Scholar]
  9. Johri M. M., Varner J. E. Characterization of rapidly labeled ribonucleic acid from dwarf peas. Plant Physiol. 1970 Mar;45(3):348–357. doi: 10.1104/pp.45.3.348. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Lockhart J. A. Intracellular Mechanism of Growth Inhibition by Radiant Energy. Plant Physiol. 1960 Jan;35(1):129–135. doi: 10.1104/pp.35.1.129. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. MANDELL J. D., HERSHEY A. D. A fractionating column for analysis of nucleic acids. Anal Biochem. 1960 Jun;1:66–77. doi: 10.1016/0003-2697(60)90020-8. [DOI] [PubMed] [Google Scholar]
  12. SIEGELMAN H. W., HENDRICKS S. B. PHYTOCHROME AND ITS CONTROL OF PLANT GROWTH AND DEVELOPMENT. Adv Enzymol Relat Areas Mol Biol. 1964;26:1–33. doi: 10.1002/9780470122716.ch1. [DOI] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES