Abstract
Using pharmacological and chromatographic techniques, it was shown that acetylcholine was present in all organs of both light- and dark-grown mung bean seedings (Phaseolus aureus). The highest concentrations were found in tissues containing active growing points: buds and secondary roots. Within 4 minutes, red light caused an increase in the efflux of acetylcholine from secondary root tips as well as a significant increase in the endogenous titer. Four minutes of subsequent far red light reduced the latter to a level comparable to that in the dark.
Acetylcholine, given for 4 minutes in the dark, was able to substitute for red light in reducing the formation of secondary roots, inducing increased H+ efflux, and causing the root tips to adhere to a negatively charged glass surface. Acetylcholine-esterase and atropine inhibited the latter phenomenon, whereas eserine inhibited the far red-induced release from glass.
These and other data support the conclusion that acetylcholine functions in mung bean roots as it does in animal systems: by mediating changes in ion flux across cell membranes. It also seems probable that acetylcholine acts as a local hormone which regulates these phytochrome-mediated phenomena.
Full text
PDF









Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- APPEL W., WERLE E. Nachweis von Histamin, N-Dimethylhistamin, N-Acetylhistamin und Acetylcholin in Spinacia oleracea. Arzneimittelforschung. 1959 Jan;9(1):22–26. [PubMed] [Google Scholar]
- BERRY J. F., WHITTAKER V. P. The acyl-group specificity of choline acetylase. Biochem J. 1959 Nov;73:447–458. doi: 10.1042/bj0730447. [DOI] [PMC free article] [PubMed] [Google Scholar]
- BURBRING E., BURN J. H., SHELLEY H. J. Acetylcholine and ciliary movement in the gill plates of Mytilus edulis. Proc R Soc Lond B Biol Sci. 1953 Sep;141(905):445–466. doi: 10.1098/rspb.1953.0053. [DOI] [PubMed] [Google Scholar]
- Bartels E., Brzin M., Dettbarn W. D. Action of acetylcholine in the presence of organophosphates on single axons of the lobster. Biochem Pharmacol. 1969 Oct;18(10):2590–2595. doi: 10.1016/0006-2952(69)90379-7. [DOI] [PubMed] [Google Scholar]
- Bieth J., Vratsanos S. M., Wassermann N., Erlanger B. F. Photoregulation of biological activity by photocromic reagents. II. Inhibitors of acetylcholinesterase. Proc Natl Acad Sci U S A. 1969 Nov;64(3):1103–1106. doi: 10.1073/pnas.64.3.1103. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Briggs W. R. Long-lived Intermediates in Phytochrome Transformation II: In Vitro and In Vivo Studies. Plant Physiol. 1969 Aug;44(8):1089–1094. doi: 10.1104/pp.44.8.1089. [DOI] [PMC free article] [PubMed] [Google Scholar]
- CHESSICK R. D. The histochemical specificity of cholinesterases. J Histochem Cytochem. 1954 Jul;2(4):258–273. doi: 10.1177/2.4.258. [DOI] [PubMed] [Google Scholar]
- FIEDLER U., HILDEBRAND G., NEU R. Weitere Inhaltsstoffe des Weissdorns: Der Nachweis von Cholin und Acetylcholin. Arzneimittelforschung. 1953 Aug;3(8):436–437. [PubMed] [Google Scholar]
- FOWLER K. S., LEWIS S. E. The extraction of acetylcholine from frozen insect tissue. J Physiol. 1958 Jun 18;142(1):165–172. doi: 10.1113/jphysiol.1958.sp006006. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Florey E. The clam-heart bioassay for acetylcholine. Comp Biochem Physiol. 1967 Feb;20(2):365–377. doi: 10.1016/0010-406x(67)90253-8. [DOI] [PubMed] [Google Scholar]
- Furuya M., Torrey J. G. The Reversible Inhibition by Red and Far-Red Light of Auxin-Induced Lateral Root Initiation in Isolated Pea Roots. Plant Physiol. 1964 Nov;39(6):987–991. doi: 10.1104/pp.39.6.987. [DOI] [PMC free article] [PubMed] [Google Scholar]
- GREENBERG M. J. A COMPENDIUM OF RESPONSES OF BIVALVE HEARTS TO ACETYLCHOLINE. Comp Biochem Physiol. 1965 Mar;14:513–539. doi: 10.1016/0010-406x(65)90224-0. [DOI] [PubMed] [Google Scholar]
- Haylett D. G., Jenkinson D. H. Effects of noradrenaline on the membrane potential and ionic permeability of parenchymal cells in the liver of the guinea-pig. Nature. 1969 Oct 4;224(5214):80–81. doi: 10.1038/224080a0. [DOI] [PubMed] [Google Scholar]
- Hendricks S. B., Borthwick H. A. The function of phytochrome in regulation of plant growth. Proc Natl Acad Sci U S A. 1967 Nov;58(5):2125–2130. doi: 10.1073/pnas.58.5.2125. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jaffe M. J. Physiological Studies on Pea Tendrils: VI. The Characteristics of Sensory Perception and Transduction. Plant Physiol. 1970 Jun;45(6):756–760. doi: 10.1104/pp.45.6.756. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jaffe M. J. Phytochrome-mediated bioelectric potentials in mung bean seedlings. Science. 1968 Nov 29;162(3857):1016–1017. doi: 10.1126/science.162.3857.1016. [DOI] [PubMed] [Google Scholar]
- KORDIK P., BULBRING E., BURN J. H. Ciliary movement and acetylcholine. Br J Pharmacol Chemother. 1952 Mar;7(1):67–79. doi: 10.1111/j.1476-5381.1952.tb00691.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- LEMBECK F., SCHRAVEN E. DER EINFLUSS VON HEMICHOLINIUM NR. 3 AUF DIE ACETYLCHOLIN-BILDUNG IN LACTOBACILLUS ARABINOSUS. Naunyn Schmiedebergs Arch Exp Pathol Pharmakol. 1964 May 5;247:93–99. doi: 10.1007/BF00245412. [DOI] [PubMed] [Google Scholar]
- LINDVIG P. E., GREIG M. E., PETERSON S. W. Studies on permeability. V. The effects of acetylcholine and physostigmine on the permeability of human erythrocytes to sodium and potassium. Arch Biochem. 1951 Feb;30(2):241–250. [PubMed] [Google Scholar]
- LIN R. C. The distribution of acetylcholine in the Malayan jack-fruit plant, Artocarpus integra. Br J Pharmacol Chemother. 1957 Sep;12(3):265–269. doi: 10.1111/j.1476-5381.1957.tb00132.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nachmansohn D. Proteins in bioelectricity: the control of ion movements across excitable membranes. Proc Natl Acad Sci U S A. 1968 Nov;61(3):1034–1041. doi: 10.1073/pnas.61.3.1034. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Saxena P. R., Tangri K. K., Bhargava K. P. Identification of acetylcholine, histamine, and 5-hydroxytryptamine in Girardinia heterophylla (Decne.). Can J Physiol Pharmacol. 1966 Jul;44(4):621–627. doi: 10.1139/y66-079. [DOI] [PubMed] [Google Scholar]
- Schmidt D. E., Szilagyi P. I., Alkon D. L., Green J. P. Acetylcholine: release from neural tissue and identification by pyrolysis--gas chromatography. Science. 1969 Sep 26;165(3900):1370–1371. doi: 10.1126/science.165.3900.1370. [DOI] [PubMed] [Google Scholar]
- TULUS M. R., ULUBELEN A., OEZER F. [Choline and acetylcholine in the leaves of Digitalis ferruginea L]. Arch Pharm. 1961 Jan;294/66:11–17. doi: 10.1002/ardp.19612940104. [DOI] [PubMed] [Google Scholar]
- Torrey J. G. EFFECTS OF LIGHT ON ELONGATION AND BRANCHING IN PEA ROOTS. Plant Physiol. 1952 Jul;27(3):591–602. doi: 10.1104/pp.27.3.591. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Weiss G. B. Effects of potassium, acetylcholine, carbachol and histamine on Na22 movements in ileal smooth muscle. J Pharmacol Exp Ther. 1969 Nov;170(1):123–131. [PubMed] [Google Scholar]


