Abstract
Illumination of chloroplasts in the presence of NH2OH (2 mm) leads to the destruction of all system II activities without affecting system I activity. The system II primary charge separation remains intact when incubated with this agent in the dark with release of one of the system II Mn pools and simultaneous destruction of O2 evolving capacity. The size of the Mn pool associated with the O2 evolving center is calculated to be 4 Mn/O2-evolving center.
We observed the following properties of the hydroxylamine-induced destruction of O2 centers in darkness: [List: see text]
Chloroplasts from summer greenhouse spinach (4-5 Mn/400 chltotal or 50 to 60% of the Mn pool of the O2-evolving center) showed high quantum requirement for O2 evolution (5-6 hv/equivalent) yet photooxidized NH2OH with low quantum requirement (∼2 hv/equivalent).
Full text
PDF







Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Arnon D. I. COPPER ENZYMES IN ISOLATED CHLOROPLASTS. POLYPHENOLOXIDASE IN BETA VULGARIS. Plant Physiol. 1949 Jan;24(1):1–15. doi: 10.1104/pp.24.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bennoun P., Joliot A. Etude de la photooxydation de l'hydroxylamine par les chloroplastes d'epinards. Biochim Biophys Acta. 1969 Sep 16;189(1):85–94. doi: 10.1016/0005-2728(69)90229-1. [DOI] [PubMed] [Google Scholar]
- Bennoun P. Réoxydation du quencher de fluorescence "Q" en présence de 3-(3,4-dichlorophényl)-1,1-diméthylurée. Biochim Biophys Acta. 1970 Sep 1;216(2):357–363. doi: 10.1016/0005-2728(70)90227-6. [DOI] [PubMed] [Google Scholar]
- Cheniae G. M., Martin I. F. Photoreaction of manganese catalyst in photosynthetic oxygen evolution. Plant Physiol. 1969 Mar;44(3):351–360. doi: 10.1104/pp.44.3.351. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cheniae G. M., Martin I. F. Site of manganese function in photosynthesis. Biochim Biophys Acta. 1968 May 28;153(4):819–837. doi: 10.1016/0005-2728(68)90009-1. [DOI] [PubMed] [Google Scholar]
- Cheniae G. M., Martin I. F. Sites of function of manganese within photosystem II. Roles in O2 evolution and system II. Biochim Biophys Acta. 1970 Mar 3;197(2):219–239. doi: 10.1016/0005-2728(70)90033-2. [DOI] [PubMed] [Google Scholar]
- Izawa S., Heath R. L., Hind G. The role of chloride ion in photosynthesis. 3. The effect of artificial electron donors upon electron transport. Biochim Biophys Acta. 1969 Jun 24;180(2):388–398. doi: 10.1016/0005-2728(69)90123-6. [DOI] [PubMed] [Google Scholar]
- Katoh S., San Pietro A. Ascorbate-supported NADP photoreduction by heated Euglena chloroplasts. Arch Biochem Biophys. 1967 Oct;122(1):144–152. doi: 10.1016/0003-9861(67)90133-6. [DOI] [PubMed] [Google Scholar]
- MILNER H. W., FRENCH C. S., KOENIG M. L. G., LAWRENCE N. S. Measurement and stabilization of activity of chloroplast material. Arch Biochem. 1950 Sep;28(2):193–200. [PubMed] [Google Scholar]
- Schwartz M. N-tetramethyl-rho-phenylenediamine as a catalyst of photophosphorylation. Biochim Biophys Acta. 1966 Feb 7;112(2):204–212. doi: 10.1016/0926-6585(66)90321-9. [DOI] [PubMed] [Google Scholar]
- Schwartz M. Wavelength-dependent quantum yields of chloroplast phosphorylation catalyzed by phenazine methosulphate. Biochim Biophys Acta. 1967 May 9;131(3):548–558. doi: 10.1016/0005-2728(67)90014-x. [DOI] [PubMed] [Google Scholar]
- VERNON L. P., ZAUGG W. S. Photoreductions by fresh and aged chloropasts: requirement for ascorbate and 2, 6-dichlorophenolindophenol with aged chloroplasts. J Biol Chem. 1960 Sep;235:2728–2733. [PubMed] [Google Scholar]
- Yamashita K., Konishi K., Itoh M., Shibata K. Photo-bleaching of carotenoids related to the electron transport in chloroplasts. Biochim Biophys Acta. 1969 Apr 8;172(3):511–524. doi: 10.1016/0005-2728(69)90147-9. [DOI] [PubMed] [Google Scholar]
