Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1971 May;47(5):696–699. doi: 10.1104/pp.47.5.696

Ethylene Biosynthesis in Fruit Tissues 1

A H Baur a, S F Yang a, H K Pratt a, J B Biale b
PMCID: PMC396753  PMID: 16657687

Abstract

Tracer studies with avocado tissues indicate that methionine is converted to ethylene at stages of the climacteric rise and the climacteric peak, but not at the preclimacteric stage. The results suggest that the control of ethylene biosynthesis is at a step after methionine is synthesized. The endogenous content of methionine was found to be so low that methionine must be actively turned over for ethylene biosynthesis during the stages when the rate of ethylene production is high. Oxygen was found to be essential for this conversion, indicating that at least one of the steps in conversion of methionine to ethylene is oxygen-dependent. The ability of methionine and its keto analogue (α-keto-γ-methylthiobutyric acid) to serve as ethylene precursors by apple tissues was compared. Chemical and kinetic evidence support the view that methionine is a closer precursor of ethylene than its keto analogue.

Full text

PDF
696

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Baur A. H., Yang S. F. Precursors of ethylene. Plant Physiol. 1969 Sep;44(9):1347–1349. doi: 10.1104/pp.44.9.1347. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Baur A., Yang S. F. Ethylene production from propanal. Plant Physiol. 1969 Feb;44(2):189–192. doi: 10.1104/pp.44.2.189. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Biale J. B., Young R. E., Olmstead A. J. Fruit Respiration and Ethylene Production. Plant Physiol. 1954 Mar;29(2):168–174. doi: 10.1104/pp.29.2.168. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Burg S. P., Clagett C. O. Conversion of methionine to ethylene in vegetative tissue and fruits. Biochem Biophys Res Commun. 1967 Apr 20;27(2):125–130. doi: 10.1016/s0006-291x(67)80050-0. [DOI] [PubMed] [Google Scholar]
  5. Burg S. P., Thimann K. V. THE PHYSIOLOGY OF ETHYLENE FORMATION IN APPLES. Proc Natl Acad Sci U S A. 1959 Mar;45(3):335–344. doi: 10.1073/pnas.45.3.335. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Lieberman M., Kunishi A. T. Ethylene production from methionine. Biochem J. 1965 Nov;97(2):449–459. doi: 10.1042/bj0970449. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Lieberman M., Kunishi A. Stimulation of ethylene production in apple tissue slices by methionine. Plant Physiol. 1966 Mar;41(3):376–382. doi: 10.1104/pp.41.3.376. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Mapson L. W. Biogenesis of ethylene. Biol Rev Camb Philos Soc. 1969 May;44(2):155–187. doi: 10.1111/j.1469-185x.1969.tb00824.x. [DOI] [PubMed] [Google Scholar]
  9. Mapson L. W., March J. F., Rhodes M. J., Wooltorton L. S. A comparative study of the ability of methionine or linolenic acid to act as precursors of ethylene in plant tissues. Biochem J. 1970 Apr;117(3):473–479. doi: 10.1042/bj1170473. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Mapson L. W., March J. F., Wardale D. A. Biosynthesis of ethylene. 4-methylmercapto-2-oxobutyric acid: an intermediate in the formation from methionine. Biochem J. 1969 Dec;115(4):653–661. doi: 10.1042/bj1150653. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Yang S. F. Biosynthesis of ethylene. Ethylene formation from methional by horseradish peroxidase. Arch Biochem Biophys. 1967 Nov;122(2):481–487. doi: 10.1016/0003-9861(67)90222-6. [DOI] [PubMed] [Google Scholar]
  12. Yang S. F. Further studies on ethylene formation from alpha-keto-gamma-methylthiobutyric acid or beta-methylthiopropionaldehyde by peroxidase in the presence of sulfite and oxygen. J Biol Chem. 1969 Aug 25;244(16):4360–4365. [PubMed] [Google Scholar]
  13. Yang S. F., Ku H. S., Pratt H. K. Photochemical production of ethylene from methionine and its analogues in the presence of flavin mononucleotide. J Biol Chem. 1967 Nov 25;242(22):5274–5280. [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES