Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1971 May;47(5):700–704. doi: 10.1104/pp.47.5.700

Reversible pH Changes in Cells of Chlamydomonas reinhardi Resulting from CO2 Fixation in the Light and Its Evolution in the Dark 1

Joseph Neumann a,2, R P Levine a
PMCID: PMC396754  PMID: 16657688

Abstract

Illumination of a suspension of Chlamydomonas reinhardi causes an increase in the pH of the medium which is reversed in the dark. This pH change is a manifestation of CO2 uptake in the light and its evolution in the dark. Simultaneous measurements of pH changes and oxygen evolution reveal that the photosynthetic coefficient approaches one.

Intact cells of F-60, a mutant strain of C. reinhardi that lacks an active phosphoribulokinase, do not exhibit the light-dependent pH increase or oxygen evolution. However, chloroplast fragments prepared from the cells of the mutant strain exhibit a normal “proton pump” activity.

The light-dependent pH increase shown by intact cells can be inhibited by KCN, by uncouplers of photosynthetic phosphorylation, and by Dio-9. It is markedly increased upon the addition of potassium bicarbonate, and all inhibitors tested inhibit the pH increase in both the presence and absence of potassium bicarbonate.

The results of the present work negate the conclusion of other workers that the light-dependent pH changes in intact cells of C. reinhardi (and probably in other algae as well) are due to the operation of the “proton pump.”

Full text

PDF
700

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arnon D. I. COPPER ENZYMES IN ISOLATED CHLOROPLASTS. POLYPHENOLOXIDASE IN BETA VULGARIS. Plant Physiol. 1949 Jan;24(1):1–15. doi: 10.1104/pp.24.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Ben-Amotz A., Ginzburg B. Z. Light-induced proton uptake in whole cells of Dunaliella parva. Biochim Biophys Acta. 1969 Jun 3;183(1):144–154. doi: 10.1016/0005-2736(69)90138-2. [DOI] [PubMed] [Google Scholar]
  3. Bennoun P., Levine R. P. Detecting mutants that have impaired photosynthesis by their increased level of fluorescence. Plant Physiol. 1967 Sep;42(9):1284–1287. doi: 10.1104/pp.42.9.1284. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Chua N. H., Levine R. P. The photosynthetic electron transport chain of Chlamydomonas reinhardi. 8. The 520 nm light-induced absorbance change in the wild-type and mutant strains. Plant Physiol. 1969 Jan;44(1):1–6. doi: 10.1104/pp.44.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Cramer W. A., Butler W. L. Light-induced absorbance changes of two cytochrome b components in the electron-transport system of spinach chloroplasts. Biochim Biophys Acta. 1967 Sep 6;143(2):332–339. doi: 10.1016/0005-2728(67)90087-4. [DOI] [PubMed] [Google Scholar]
  6. Deamer D. W., Packer L. Light-dependent anion transport in isolated spinach chloroplasts. Biochim Biophys Acta. 1969 Apr 8;172(3):539–545. doi: 10.1016/0005-2728(69)90149-2. [DOI] [PubMed] [Google Scholar]
  7. Dilley R. A. The effect of various energy-conversion states of chloroplasts on proton and electron transport. Arch Biochem Biophys. 1970 Mar;137(1):270–283. doi: 10.1016/0003-9861(70)90434-0. [DOI] [PubMed] [Google Scholar]
  8. Dilley R. A., Vernon L. P. Ion and water transport processes related to the light-dependent shrinkage of spinach chloroplasts. Arch Biochem Biophys. 1965 Aug;111(2):365–375. doi: 10.1016/0003-9861(65)90198-0. [DOI] [PubMed] [Google Scholar]
  9. Gorman D. S., Levine R. P. Cytochrome f and plastocyanin: their sequence in the photosynthetic electron transport chain of Chlamydomonas reinhardi. Proc Natl Acad Sci U S A. 1965 Dec;54(6):1665–1669. doi: 10.1073/pnas.54.6.1665. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. HEYTLER P. G., PRICHARD W. W. A new class of uncoupling agents--carbonyl cyanide phenylhydrazones. Biochem Biophys Res Commun. 1962 May 4;7:272–275. doi: 10.1016/0006-291x(62)90189-4. [DOI] [PubMed] [Google Scholar]
  11. Hind G., Jagendorf A. T. SEPARATION OF LIGHT AND DARK STAGES IN PHOTOPHOSPHORYLATION. Proc Natl Acad Sci U S A. 1963 May;49(5):715–722. doi: 10.1073/pnas.49.5.715. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Hiyama T., Nishimura M., Chance B. Energy and Electron Transfer Systems of Chlamydomonas reinhardi. I. Photosynthetic and Respiratory Cytochrome Systems of the Pale Green Mutant. Plant Physiol. 1969 Apr;44(4):527–534. doi: 10.1104/pp.44.4.527. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Izawa S., Hind G. The kinetics of the pH rise in illuminated chloroplast suspensions. Biochim Biophys Acta. 1967 Sep 6;143(2):377–390. doi: 10.1016/0005-2728(67)90091-6. [DOI] [PubMed] [Google Scholar]
  14. JAGENDORF A. T., NEUMANN J. EFFECT OF UNCOUPLERS ON THE LIGHT-INDUCED PH RISE WITH SPINACH CHLOROPLASTS. J Biol Chem. 1965 Jul;240:3210–3214. [PubMed] [Google Scholar]
  15. Karlish S. J., Avron M. Analysis of light-induced proton uptake in isolated chloroplasts. Biochim Biophys Acta. 1968 May 28;153(4):878–888. doi: 10.1016/0005-2728(68)90015-7. [DOI] [PubMed] [Google Scholar]
  16. McCarty R. E., Guillory R. J., Racker E. Dio-9, an inhibitor of coupled electron transport and phosphorylation in chloroplasts. J Biol Chem. 1965 Dec;240(12):4822–4823. [PubMed] [Google Scholar]
  17. McCarty R. E., Racker E. Effect of a coupling factor and its antiserum on photophosphorylation and hydrogen ion transport. Brookhaven Symp Biol. 1966;19:202–214. [PubMed] [Google Scholar]
  18. Moll B., Levine R. P. Characterization of a Photosynthetic Mutant Strain of Chlamydomonas reinhardi Deficient in Phosphoribulokinase Activity. Plant Physiol. 1970 Oct;46(4):576–580. doi: 10.1104/pp.46.4.576. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. NEUMANN J., JAGENDORF A. T. LIGHT-INDUCED PH CHANGES RELATED PHOSPHORYLATION BY CHLOROPLASTS. Arch Biochem Biophys. 1964 Jul;107:109–119. doi: 10.1016/0003-9861(64)90276-0. [DOI] [PubMed] [Google Scholar]
  20. PUMPHREY A. M. Studies on the electron transfer system. XLV. Some effects of antimycin on cytochrome b. J Biol Chem. 1962 Jul;237:2384–2390. [PubMed] [Google Scholar]
  21. ROSENBERG J. L. Use of a glass electrode for measuring rapid changes in photosynthetic rates. J Gen Physiol. 1954 Jul 20;37(6):753–774. doi: 10.1085/jgp.37.6.753. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES