Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1971 Aug;48(2):150–155. doi: 10.1104/pp.48.2.150

A Role for Zinc in the Structural Integrity of the Cytoplasmic Ribosomes of Euglena gacilis1,2

Judith A Prask a,3, Donald J Plocke a
PMCID: PMC396821  PMID: 16657753

Abstract

Zinc deficiency in dark-grown Euglena gracilis Klebs, Z strain Pringsheim, results in the disappearance of cytoplasmic ribosomes. In contrast, ribosomes in zinc-sufficient Euglena are conserved, do not undergo turnover, and can be demonstrated at any stage of growth. The zinc content of ribosomes from zinc-deficient Euglena just prior to ribosomal disappearance is 300 to 380 micrograms of zinc per gram rRNA as compared to 650 to 1280 micrograms of zinc per gram rRNA in ribosomes from zinc-sufficient cells. Ribosomal disappearance is believed to involve a generalized disintegration process related to the lower content of zinc in the ribosomes. Reappearance of ribosomes requires the addition of zinc. It is proposed that adequate zinc may be essential for normal tertiary and quaternary structure of the cytoplasmic ribosomes of Euglena.

Full text

PDF
150

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. AMES B. N., DUBIN D. T. The role of polyamines in the neutralization of bacteriophage deoxyribonucleic acid. J Biol Chem. 1960 Mar;235:769–775. [PubMed] [Google Scholar]
  2. Cahn F., Schachter E. M., Rich A. Polypeptide synthesis with ribonuclease-digested ribosomes. Biochim Biophys Acta. 1970;209(2):512–520. doi: 10.1016/0005-2787(70)90748-3. [DOI] [PubMed] [Google Scholar]
  3. Eichhorn G. L., Clark P., Tarien E. The interaction of metal ions with polynucleotides and related compounds. 13. The effect of metal ions on the enzymatic degradation of ribonucleic acid by bovine pancreatic ribonuclease and of deoxyribonucleic acid by bovine pancreatic deoxyribonuclease I. J Biol Chem. 1969 Feb 10;244(3):937–942. [PubMed] [Google Scholar]
  4. FELLIG J., WILEY C. E. Ribonuclease of Euglena gracilis. Science. 1960 Dec 16;132(3442):1835–1836. doi: 10.1126/science.132.3442.1835. [DOI] [PubMed] [Google Scholar]
  5. Fuwa K., Wacker W. E., Druyan R., Bartholomay A. F., Vallee B. L. NUCLEIC ACIDS AND METALS, II: TRANSITION METALS AS DETERMINANTS OF THE CONFORMATION OF RIBONUCLEIC ACIDS. Proc Natl Acad Sci U S A. 1960 Oct;46(10):1298–1307. doi: 10.1073/pnas.46.10.1298. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. GIERER A. Function of aggregated reticulocyte ribosomes in protein synthesis. J Mol Biol. 1963 Feb;6:148–157. doi: 10.1016/s0022-2836(63)80131-x. [DOI] [PubMed] [Google Scholar]
  7. Gesteland R. F. Unfolding of Escherichia coli ribosomes by removal of magnesium. J Mol Biol. 1966 Jul;18(2):356–371. doi: 10.1016/s0022-2836(66)80253-x. [DOI] [PubMed] [Google Scholar]
  8. Hoober J. K., Siekevitz P., Palade G. E. Formation of chloroplast membranes in Chlamydomonas reinhardi y-1. Effects of inhibitors of protein synthesis. J Biol Chem. 1969 May 25;244(10):2621–2631. [PubMed] [Google Scholar]
  9. Kennell D., Kotoulas A. Magnesium starvation of Aerobacter aerogenes. I. Changes in nucleic acid composition. J Bacteriol. 1967 Jan;93(1):334–344. doi: 10.1128/jb.93.1.334-344.1967. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Kennell D., Kotoulas A. Magnesium starvation of Aerobacter aerogenes. II. Rates of nucleic acid synthesis and methods for their measurement. J Bacteriol. 1967 Jan;93(1):345–356. doi: 10.1128/jb.93.1.345-356.1967. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Loening U. E. Molecular weights of ribosomal RNA in relation to evolution. J Mol Biol. 1968 Dec;38(3):355–365. doi: 10.1016/0022-2836(68)90391-4. [DOI] [PubMed] [Google Scholar]
  12. Läuchli A. Radioassay for beta-emitters in biological materials using Cerenkov radiation. Int J Appl Radiat Isot. 1969 Apr;20(4):265–270. doi: 10.1016/0020-708x(69)90054-4. [DOI] [PubMed] [Google Scholar]
  13. Marchesi S. L., Kennell D. Magnesium starvation of Aerobacter aerogenes. 3. Protein metabolism. J Bacteriol. 1967 Jan;93(1):357–366. doi: 10.1128/jb.93.1.357-366.1967. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Morrill G. A., Reiss M. M. Inhibition of enzymatic degradation of RNA by bound calcium and magnesium. Biochim Biophys Acta. 1969 Mar 18;179(1):43–49. doi: 10.1016/0005-2787(69)90120-8. [DOI] [PubMed] [Google Scholar]
  15. NASON A. Effect of zinc deficiency on the synthesis of tryptophan by Neurospora extracts. Science. 1950 Jul 28;112(2900):111–112. doi: 10.1126/science.112.2900.111. [DOI] [PubMed] [Google Scholar]
  16. NASON A., KAPLAN N. O., COLOWICK S. P. Changes in enzymatic constitution in zinc-deficient Neurospora. J Biol Chem. 1951 Jan;188(1):397–406. [PubMed] [Google Scholar]
  17. Price C. A., Vallee B. L. Euglena gracilis, A Test Organism for Study of Zinc. Plant Physiol. 1962 May;37(3):428–433. doi: 10.1104/pp.37.3.428. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Rawson J. R., Stutz E. Characterization of Euglena cytoplasmic ribosomes and ribosomal RNA by zone velocity sedimentation IN SUCROSE GRADIENTS. J Mol Biol. 1968 Apr 14;33(1):309–314. doi: 10.1016/0022-2836(68)90296-9. [DOI] [PubMed] [Google Scholar]
  19. Rawson J. R., Stutz E. Isolation and characterization of Euglena gracilis cytoplasmic and chloroplast ribosomes and their ribosomal RNA components. Biochim Biophys Acta. 1969 Oct 22;190(2):368–380. doi: 10.1016/0005-2787(69)90087-2. [DOI] [PubMed] [Google Scholar]
  20. Reisner A. H., Rowe J., Macindoe H. M. Structural studies on the ribosomes of Paramecium: evidence for a "primitive" animal ribosome. J Mol Biol. 1968 Mar 28;32(3):587–610. doi: 10.1016/0022-2836(68)90345-8. [DOI] [PubMed] [Google Scholar]
  21. SANTER M. RIBOSOMAL RNA ON THE SURFACE OF RIBOSOMES. Science. 1963 Sep 13;141(3585):1049–1050. doi: 10.1126/science.141.3585.1049. [DOI] [PubMed] [Google Scholar]
  22. Stutz E., Noll H. Characterization of cytoplasmic and chloroplast polysomes in plants: evidence for three classes of ribosomal RNA in nature. Proc Natl Acad Sci U S A. 1967 Mar;57(3):774–781. doi: 10.1073/pnas.57.3.774. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. TASHIRO Y., SIEKEVITZ P. ULTRACENTRIFUGAL STUDIES ON THE DISSOCIATION OF HEPATIC RIBOSOMES. J Mol Biol. 1965 Feb;11:149–165. doi: 10.1016/s0022-2836(65)80047-x. [DOI] [PubMed] [Google Scholar]
  24. THIERS R. E. Contamination in trace element analysis and its control. Methods Biochem Anal. 1957;5:273–335. doi: 10.1002/9780470110218.ch6. [DOI] [PubMed] [Google Scholar]
  25. Tal M. Metal ions and ribosomal conformation. Biochim Biophys Acta. 1969 Nov 19;195(1):76–86. doi: 10.1016/0005-2787(69)90604-2. [DOI] [PubMed] [Google Scholar]
  26. Tal M. On the role of Zn2+ and Ni2+ in ribosome structure. Biochim Biophys Acta. 1968 Dec 17;169(2):564–565. doi: 10.1016/0005-2787(68)90072-5. [DOI] [PubMed] [Google Scholar]
  27. Tal M. Thermal denaturation of ribosomes. Biochemistry. 1969 Jan;8(1):424–435. doi: 10.1021/bi00829a058. [DOI] [PubMed] [Google Scholar]
  28. WACKER W. E. Nucleic acids and metals. III. Changes in nucleic acid, protein, and metal content as a consequence of zinc deficiency in Euglena gracilis. Biochemistry. 1962 Sep;1:859–865. doi: 10.1021/bi00911a019. [DOI] [PubMed] [Google Scholar]
  29. WINDER F. G., O'HARA C. Effects of iron deficiency and of zinc deficiency on the composition of Mycobacterium smegmatis. Biochem J. 1962 Jan;82:98–108. doi: 10.1042/bj0820098. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES