Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1971 Aug;48(2):197–202. doi: 10.1104/pp.48.2.197

The Induction of Phenylalanine Ammonia Lyase and Phaseollin by 9-Aminoacridine and Other Deoxyribonucleic Acid Intercalating Compounds 1

Samuel L Hess a,2, Lee A Hadwiger a
PMCID: PMC396830  PMID: 16657762

Abstract

Bean pod tissue (Phaseolus vulgaris L. var. Top Crop) is induced to produce phaseollin when challenged with various microorganisms. The pods react in the same manner when challenged with 9-aminoacridine. This compound also caused an increase in concentrations of phenylalanine ammonia lyase, an enzyme of the phaseollin synthesizing pathway. Both the synthesis of phenylalanine ammonia lyase and phaseollin are subject to inhibition by actinomycin D, cycloheximide, or 6-methylpurine. The results suggest that both phaseollin production and increased phenylalanine ammonia lyase, when induced by 9-aminoacridine, require newly synthesized RNA and protein.

The concentration of 9-aminoacridine optimal for synthesis of phaseollin and PAL (0.5 mg/ml) does not increase the rate of total protein synthesis. However, there is a differential effect of 9-aminoacridine on synthesis of certain protein fractions. Optimal concentrations of 9-aminoacridine induce phaseollin and phenylalanine ammonia lyase synthesis while reducing the net synthesis of RNA during the period of induction.

The planar three-ring structure of 9-aminoacridine appears to be a desirable feature for phaseollin and phenylalanine ammonia lyase induction. Similar compounds, all DNA intercalators, having dimethylamino, diethylamino, amino, or 9-alkylamino substitutions of a three-ring acridine skeleton, are also inducers of phenylalanine ammonia lyase and phaseollin synthesis.

It is suggested that 9-aminoacridine and other DNA intercalators function as inducers of phaseollin and phenylalanine ammonia lyase synthesis by reacting with the DNA template.

Full text

PDF
197

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ARMSTRONG J. A. Histochemical differentiation of nucleic acids by means of induced fluorescence. Exp Cell Res. 1956 Dec;11(3):640–643. doi: 10.1016/0014-4827(56)90173-2. [DOI] [PubMed] [Google Scholar]
  2. Burlington R. F., Maher J. T., Angelakos E. T. Effect of temperature on contractility of isolated atria from a hibernator and a non-hibernator. Life Sci. 1968 May 1;7(9):449–452. doi: 10.1016/0024-3205(68)90046-5. [DOI] [PubMed] [Google Scholar]
  3. CRUICKSHANK I. A., PERRIN D. R. PHYTOALEXINS OF THE LEGUMINOSAE. PHASEOLIN FROM PHASEOLUS VULGARIS L. Life Sci. 1963 Sep;9:680–682. doi: 10.1016/0024-3205(63)90154-1. [DOI] [PubMed] [Google Scholar]
  4. Caspersson T., Zech L., Modest E. J., Foley G. E., Wagh U., Simonsson E. DNA-binding fluorochromes for the study of the organization of the metaphase nucleus. Exp Cell Res. 1969 Nov;58(1):141–152. doi: 10.1016/0014-4827(69)90124-4. [DOI] [PubMed] [Google Scholar]
  5. Crawford L. V., Waring M. J. Supercoiling of polyoma virus DNA measured by its interaction with ethidium bromide. J Mol Biol. 1967 Apr 14;25(1):23–30. doi: 10.1016/0022-2836(67)90276-8. [DOI] [PubMed] [Google Scholar]
  6. Goldring E. S., Grossman L. I., Krupnick D., Cryer D. R., Marmur J. The petite mutation in yeast. Loss of mitochondrial deoxyribonucleic acid during induction of petites with ethidium bromide. J Mol Biol. 1970 Sep 14;52(2):323–335. doi: 10.1016/0022-2836(70)90033-1. [DOI] [PubMed] [Google Scholar]
  7. HURWITZ J., FURTH J. J., MALAMY M., ALEXANDER M. The role of deoxyribonucleic acid in ribonucleic acid synthesis. III. The inhibition of the enzymatic synthesis of ribonucleic acid and deoxyribonucleic acid by actinomycin D and proflavin. Proc Natl Acad Sci U S A. 1962 Jul 15;48:1222–1230. doi: 10.1073/pnas.48.7.1222. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Hadwiger L. A., Schwochau M. E. Specificity of deoxyribonucleic Acid intercalating compounds in the control of phenylalanine ammonia lyase and pisatin levels. Plant Physiol. 1971 Mar;47(3):346–351. doi: 10.1104/pp.47.3.346. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. INGLE J., KEY J. L., HOLM R. E. DEMONSTRATION AND CHARACTERIZATION OF A DNA-LIKE RNA IN EXCISED PLANT TISSUE. J Mol Biol. 1965 Apr;11:730–746. doi: 10.1016/s0022-2836(65)80031-6. [DOI] [PubMed] [Google Scholar]
  10. KRIEG A. Mikroskopische Studien in vivo zur Zytologie der Hefezelle. Experientia. 1954 Apr 15;10(4):172–173. doi: 10.1007/BF02157196. [DOI] [PubMed] [Google Scholar]
  11. Key J. L. Effect of purine and pyrimidine analogues on growth and RNA metabolism in the soybean hypocotyl-the selective action of 5-fluorouracil. Plant Physiol. 1966 Oct;41(8):1257–1264. doi: 10.1104/pp.41.8.1257. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. LERMAN L. S. Structural considerations in the interaction of DNA and acridines. J Mol Biol. 1961 Feb;3:18–30. doi: 10.1016/s0022-2836(61)80004-1. [DOI] [PubMed] [Google Scholar]
  13. POLLOCK M. R. THE DIFFERENTIAL EFFECT OF ACTINOMYCIN D ON THE BIOSYNTHESIS OF ENZYMES IN BACILLUS SUBTILIS AND BACILLUS CEREUS. Biochim Biophys Acta. 1963 Sep 17;76:80–93. [PubMed] [Google Scholar]
  14. SMILES J., TAYLOR A. E. Induced fluorescence with acridine orange in nematode embryology. Nature. 1957 Feb 9;179(4554):306–307. doi: 10.1038/179306a0. [DOI] [PubMed] [Google Scholar]
  15. Tomkins G. M., Gelehrter T. D., Granner D., Martin D., Jr, Samuels H. H., Thompson E. B. Control of specific gene expression in higher organisms. Expression of mammalian genes may be controlled by repressors acting on the translation of messenger RNA. Science. 1969 Dec 19;166(3912):1474–1480. doi: 10.1126/science.166.3912.1474. [DOI] [PubMed] [Google Scholar]
  16. Wunderlich V., Schütt M., Böttger M., Graffi A. Preferential alkylation of mitochondrial deoxyribonucleic acid by N-methyl-N-nitrosourea. Biochem J. 1970 Jun;118(1):99–109. doi: 10.1042/bj1180099. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Zucker M. Sequential Induction of Phenylalanine Ammonia-lyase and a Lyase-inactivating System in Potato Tuber Disks. Plant Physiol. 1968 Mar;43(3):365–374. doi: 10.1104/pp.43.3.365. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES