Abstract
Avena coleoptiles did not elongate when incubated with tryptophan under sterile conditions. Indole, anthranilic acid, and tryptamine promoted elongation. Under the same conditions, the tissue converted tryptophan-14C to IAA-14C. More IAA-14C was produced from indole-14C than from tryptophan-14C; however, the free tryptophan content of the tissue was also greatly increased by the indole treatment. Tryptophan-14C was readily taken up by the tissue but was mainly incorporated into protein and did not increase the free tryptophan level. When bean shoots were labeled with tryptophan-14C or indole-14C, the label incorporation into IAA-14C was very nearly the same. In this tissue the free tryptophan level in the tryptophan-14C and indole-14C treatments was also about equal. These results suggest that failure of exogenously supplied tryptophan to promote the elongation of Avena coleoptiles is a result of its predominant incorporation into protein and consequent unavailability for conversion to IAA.
Full text
PDF



Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- BRAUN A. C., WOOD H. N. On the activation of certain essential biosynthetic systems in cells of Vinca rosea L. Proc Natl Acad Sci U S A. 1962 Oct 15;48:1776–1782. doi: 10.1073/pnas.48.10.1776. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Delmer D. P., Mills S. E. Tryptophan Biosynthesis in Cell Cultures of Nicotiana tabacum. Plant Physiol. 1968 Jan;43(1):81–87. doi: 10.1104/pp.43.1.81. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lantican B. P., Muir R. M. Isolation and properties of the enzyme system forming indoleacetic Acid. Plant Physiol. 1967 Aug;42(8):1158–1160. doi: 10.1104/pp.42.8.1158. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Phelps R. H., Sequeira L. Synthesis of Indoleacetic Acid via Tryptamine by a Cell-free System from Tobacco Terminal Buds. Plant Physiol. 1967 Aug;42(8):1161–1163. doi: 10.1104/pp.42.8.1161. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sherwin J. E., Purves W. K. Tryptophan as an auxin precursor in cucumber seedlings. Plant Physiol. 1969 Sep;44(9):1303–1309. doi: 10.1104/pp.44.9.1303. [DOI] [PMC free article] [PubMed] [Google Scholar]
