Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1971 Dec;48(6):702–706. doi: 10.1104/pp.48.6.702

Enhancement of Nitrate Reductase Activity by Benzyladenine in Agrostemma githago1

Hans Kende a, Heinz Hahn a,2, Sandra E Kays a
PMCID: PMC396932  PMID: 16657864

Abstract

Nitrate reductase activity in excised embryos of Agrostemma githago increases in response to both NO3 and cytokinins. We asked the question whether cytokinins affected nitrate reductase activity directly or through NO3, either by amplifying the effect of low endogenous NO3 levels, or by making NO3 available for induction from a metabolically inactive compartment. Nitrate reductase activity was enhanced on the average by 50% after 1 hour of benzyladenine treatment. In some experiments, the cytokinin response was detectable as early as 30 minutes after addition of benzyladenine. Nitrate reductase activity increased linearly for 4 hours and began to decay 13 hours after start of the hormone treatment. When embryos were incubated in solutions containing mixtures of NO3 and benzyladenine, additive responses were obtained. The effects of NO3 and benzyladenine were counteracted by abscisic acid. The increase in nitrate reductase activity was inhibited at lower abscisic acid concentrations in embryos which were induced with NO3, as compared to embryos treated with benzyladenine. Casein hydrolysate inhibited the development of nitrate reductase activity. The response to NO3 was more susceptible to inhibition by casein hydrolysate than the response to the hormone. When NO3 and benzyladenine were withdrawn from the medium after maximal enhancement of nitrate reductase activity, the level of the enzyme decreased rapidly. Nitrate reductase activity increasd again as a result of a second treatment with benzyladenine but not with NO3. At the time of the second exposure to benzyladenine, no NO3 was detectable in extracts of Agrostemma embryos. This is taken as evidence that cytokinins enhance nitrate reductase activity directly and not through induction by NO3.

Full text

PDF
702

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ferrari T. E., Varner J. E. Control of nitrate reductase activity in barley aleurone layers. Proc Natl Acad Sci U S A. 1970 Mar;65(3):729–736. doi: 10.1073/pnas.65.3.729. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Ferrari T. E., Varner J. E. Substrate induction of nitrate reductase in barley aleurone layers. Plant Physiol. 1969 Jan;44(1):85–88. doi: 10.1104/pp.44.1.85. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Filner P. Regulation of nitrate reductase in cultured tobacco cells. Biochim Biophys Acta. 1966 May 5;118(2):299–310. doi: 10.1016/s0926-6593(66)80038-3. [DOI] [PubMed] [Google Scholar]
  4. Heimer Y. M., Filner P. Regulation of the nitrate assimilation pathway in cultured tobacco cells. 3. The nitrate uptake system. Biochim Biophys Acta. 1971 Feb 23;230(2):362–372. doi: 10.1016/0304-4165(71)90223-6. [DOI] [PubMed] [Google Scholar]
  5. Lips S. H., Roth-Bejerano N. Light and hormones: interchangeability in the induction of nitrate reductase. Science. 1969 Oct 3;166(3901):109–110. doi: 10.1126/science.166.3901.109. [DOI] [PubMed] [Google Scholar]
  6. Wray J. L., Filner P. Structural and functional relationships of enzyme activities induced by nitrate in barley. Biochem J. 1970 Oct;119(4):715–725. doi: 10.1042/bj1190715. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Zielke H. R., Filner P. Synthesis and turnover of nitrate reductase induced by nitrate in cultured tobacco cells. J Biol Chem. 1971 Mar 25;246(6):1772–1779. [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES