Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1996 Apr 2;93(7):2702–2707. doi: 10.1073/pnas.93.7.2702

Eradication of human hepatic and pulmonary melanoma metastases in SCID mice by antibody-interleukin 2 fusion proteins.

J C Becker 1, J D Pancook 1, S D Gillies 1, J Mendelsohn 1, R A Reisfeld 1
PMCID: PMC39694  PMID: 8610104

Abstract

Antibody-cytokine fusion proteins combine the unique targeting ability of antibodies with the multifunctional activity of cytokines. Here, we demonstrate the therapeutic efficacy of such constructs for the treatment of hepatic and pulmonary metastases of different melanoma cell lines. Two antibody-interleukin 2 (IL-2) fusion proteins, ch225-IL2 and ch14.18-IL2, constructed by fusion of a synthetic sequence coding for human IL-2 to the carboxyl end of the Cgamma1 gene of the corresponding antibodies, were tested for their therapeutic efficacy against xenografted human melanoma in vivo. Tumor-specific fusion proteins completely inhibited the growth of hepatic and pulmonary metastases in C.B-17 scid/scid mice previously reconstituted with human lymphokine-activated killer cells, whereas treatment with combinations of the corresponding antibodies plus recombinant IL-2 only reduced the tumor load. Even when treatment with fusion proteins was delayed up to 8 days after inoculation of tumor cells, it still resulted in complete eradication of micrometastases that were established at that time point. Selection of tumor cell lines expressing or lacking the targeted antigen of the administered fusion protein proved the specificity of the observed antitumor effect. Biodistribution analysis demonstrated that the tumor-specific fusion protein accumulated not only in subcutaneous tumors but also in lungs and livers affected with micrometastases. Survival times of animals treated with the fusion protein were more than doubled as compared to those treated with the combination of the corresponding antibody plus IL-2. Our data demonstrate that an immunotherapeutic approach using cytokines targeted by antibodies to tumor sites has potent effects against disseminated human melanoma.

Full text

PDF
2702

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Colombo M. P., Forni G. Cytokine gene transfer in tumor inhibition and tumor therapy: where are we now? Immunol Today. 1994 Feb;15(2):48–51. doi: 10.1016/0167-5699(94)90131-7. [DOI] [PubMed] [Google Scholar]
  2. Dummer R., Gore M. E., Hancock B. W., Guillou P. J., Grobben H. C., Becker J. C., Oskam R., Dieleman J. P., Burg G. A multicenter phase II clinical trial using dacarbazine and continuous infusion interleukin-2 for metastatic melanoma. Clinical data and immunomonitoring. Cancer. 1995 Feb 15;75(4):1038–1044. doi: 10.1002/1097-0142(19950215)75:4<1038::aid-cncr2820750421>3.0.co;2-f. [DOI] [PubMed] [Google Scholar]
  3. Fell H. P., Gayle M. A., Grosmaire L., Ledbetter J. A. Genetic construction and characterization of a fusion protein consisting of a chimeric F(ab') with specificity for carcinomas and human IL-2. J Immunol. 1991 Apr 1;146(7):2446–2452. [PubMed] [Google Scholar]
  4. George A. J., Spooner R. A., Epenetos A. A. Applications of monoclonal antibodies in clinical oncology. Immunol Today. 1994 Dec;15(12):559–561. doi: 10.1016/0167-5699(94)90216-X. [DOI] [PubMed] [Google Scholar]
  5. Ghetie M. A., Vitetta E. S. Recent developments in immunotoxin therapy. Curr Opin Immunol. 1994 Oct;6(5):707–714. doi: 10.1016/0952-7915(94)90073-6. [DOI] [PubMed] [Google Scholar]
  6. Gillies S. D., Lo K. M., Wesolowski J. High-level expression of chimeric antibodies using adapted cDNA variable region cassettes. J Immunol Methods. 1989 Dec 20;125(1-2):191–202. doi: 10.1016/0022-1759(89)90093-8. [DOI] [PubMed] [Google Scholar]
  7. Gillies S. D., Reilly E. B., Lo K. M., Reisfeld R. A. Antibody-targeted interleukin 2 stimulates T-cell killing of autologous tumor cells. Proc Natl Acad Sci U S A. 1992 Feb 15;89(4):1428–1432. doi: 10.1073/pnas.89.4.1428. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Gillies S. D., Young D., Lo K. M., Foley S. F., Reisfeld R. A. Expression of genetically engineered immunoconjugates of lymphotoxin and a chimeric anti-ganglioside GD2 antibody. Hybridoma. 1991 Jun;10(3):347–356. doi: 10.1089/hyb.1991.10.347. [DOI] [PubMed] [Google Scholar]
  9. Gillies S. D., Young D., Lo K. M., Roberts S. Biological activity and in vivo clearance of antitumor antibody/cytokine fusion proteins. Bioconjug Chem. 1993 May-Jun;4(3):230–235. doi: 10.1021/bc00021a008. [DOI] [PubMed] [Google Scholar]
  10. Goldenberg D. M., Larson S. M., Reisfeld R. A., Schlom J. Targeting cancer with radiolabeled antibodies. Immunol Today. 1995 Jun;16(6):261–264. doi: 10.1016/0167-5699(95)80177-4. [DOI] [PubMed] [Google Scholar]
  11. Hank J. A., Surfus J., Gan J., Chew T. L., Hong R., Tans K., Reisfeld R., Seeger R. C., Reynolds C. P., Bauer M. Treatment of neuroblastoma patients with antiganglioside GD2 antibody plus interleukin-2 induces antibody-dependent cellular cytotoxicity against neuroblastoma detected in vitro. J Immunother Emphasis Tumor Immunol. 1994 Jan;15(1):29–37. doi: 10.1097/00002371-199401000-00004. [DOI] [PubMed] [Google Scholar]
  12. Jurcic J. G., Scheinberg D. A. Recent developments in the radioimmunotherapy of cancer. Curr Opin Immunol. 1994 Oct;6(5):715–721. doi: 10.1016/0952-7915(94)90074-4. [DOI] [PubMed] [Google Scholar]
  13. Koh H. K. Cutaneous melanoma. N Engl J Med. 1991 Jul 18;325(3):171–182. doi: 10.1056/NEJM199107183250306. [DOI] [PubMed] [Google Scholar]
  14. Lanzavecchia A. Identifying strategies for immune intervention. Science. 1993 May 14;260(5110):937–944. doi: 10.1126/science.8493532. [DOI] [PubMed] [Google Scholar]
  15. Maas R. A., Dullens H. F., Den Otter W. Interleukin-2 in cancer treatment: disappointing or (still) promising? A review. Cancer Immunol Immunother. 1993;36(3):141–148. doi: 10.1007/BF01741084. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Maass G., Schmidt W., Berger M., Schilcher F., Koszik F., Schneeberger A., Stingl G., Birnstiel M. L., Schweighoffer T. Priming of tumor-specific T cells in the draining lymph nodes after immunization with interleukin 2-secreting tumor cells: three consecutive stages may be required for successful tumor vaccination. Proc Natl Acad Sci U S A. 1995 Jun 6;92(12):5540–5544. doi: 10.1073/pnas.92.12.5540. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Miller N., Vile R. Targeted vectors for gene therapy. FASEB J. 1995 Feb;9(2):190–199. doi: 10.1096/fasebj.9.2.7781922. [DOI] [PubMed] [Google Scholar]
  18. Mitchell M. S. Relapse in the central nervous system in melanoma patients successfully treated with biomodulators. J Clin Oncol. 1989 Nov;7(11):1701–1709. doi: 10.1200/JCO.1989.7.11.1701. [DOI] [PubMed] [Google Scholar]
  19. Mueller B. M., Reisfeld R. A., Gillies S. D. Serum half-life and tumor localization of a chimeric antibody deleted of the CH2 domain and directed against the disialoganglioside GD2. Proc Natl Acad Sci U S A. 1990 Aug;87(15):5702–5705. doi: 10.1073/pnas.87.15.5702. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Mueller B. M., Romerdahl C. A., Gillies S. D., Reisfeld R. A. Enhancement of antibody-dependent cytotoxicity with a chimeric anti-GD2 antibody. J Immunol. 1990 Feb 15;144(4):1382–1386. [PubMed] [Google Scholar]
  21. Mueller B. M., Romerdahl C. A., Trent J. M., Reisfeld R. A. Suppression of spontaneous melanoma metastasis in scid mice with an antibody to the epidermal growth factor receptor. Cancer Res. 1991 Apr 15;51(8):2193–2198. [PubMed] [Google Scholar]
  22. Naber S. P. Molecular pathology--detection of neoplasia. N Engl J Med. 1994 Dec 1;331(22):1508–1510. doi: 10.1056/NEJM199412013312208. [DOI] [PubMed] [Google Scholar]
  23. Naramura M., Gillies S. D., Mendelsohn J., Reisfeld R. A., Mueller B. M. Mechanisms of cellular cytotoxicity mediated by a recombinant antibody-IL2 fusion protein against human melanoma cells. Immunol Lett. 1993 Dec;39(1):91–99. doi: 10.1016/0165-2478(93)90169-3. [DOI] [PubMed] [Google Scholar]
  24. Rosenberg S. A., Packard B. S., Aebersold P. M., Solomon D., Topalian S. L., Toy S. T., Simon P., Lotze M. T., Yang J. C., Seipp C. A. Use of tumor-infiltrating lymphocytes and interleukin-2 in the immunotherapy of patients with metastatic melanoma. A preliminary report. N Engl J Med. 1988 Dec 22;319(25):1676–1680. doi: 10.1056/NEJM198812223192527. [DOI] [PubMed] [Google Scholar]
  25. Sabzevari H., Gillies S. D., Mueller B. M., Pancook J. D., Reisfeld R. A. A recombinant antibody-interleukin 2 fusion protein suppresses growth of hepatic human neuroblastoma metastases in severe combined immunodeficiency mice. Proc Natl Acad Sci U S A. 1994 Sep 27;91(20):9626–9630. doi: 10.1073/pnas.91.20.9626. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Savage P., So A., Spooner R. A., Epenetos A. A. A recombinant single chain antibody interleukin-2 fusion protein. Br J Cancer. 1993 Feb;67(2):304–310. doi: 10.1038/bjc.1993.57. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Schmidt-Wolf G., Schmidt-Wolf I. G. Cytokines and clinical gene therapy. Eur J Immunol. 1995 Apr;25(4):1137–1140. doi: 10.1002/eji.1830250445. [DOI] [PubMed] [Google Scholar]
  28. Takahashi H., Nakada T., Puisieux I. Inhibition of human colon cancer growth by antibody-directed human LAK cells in SCID mice. Science. 1993 Mar 5;259(5100):1460–1463. doi: 10.1126/science.8451642. [DOI] [PubMed] [Google Scholar]
  29. Whiteside T. L. Cancer therapy with tumor-infiltrating lymphocytes: evaluation of potential and limitations. In Vivo. 1991 Nov-Dec;5(6):553–559. [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES