Abstract
The coupling of calcium transport to ATP hydrolysis in rabbit muscle sarcoplasmic reticulum vesicles was determined under steady-state conditions in the presence of 5 mM oxalate and using various concentrations of vesicles to modulate the concentration of free Ca2+ in the medium. This experimental approach takes advantage of the fact that at high concentrations of vesicles the slow rate of liberation of Ca2+ from its oxalate complex becomes rate limiting for pumping, therefore pushing the steady-state levels of this cation to very low values. A reduction in the number of calcium ions transported per ATP cleaved from a value near 2 at a low concentration of vesicles (high medium Ca2+ concentration) to a limiting value of about 1 at a very high concentration of vesicles (low medium Ca2+ concentration) was observed. A marked decrease in the specific ATPase activity was also found to take place as the concentration of the sarcoplasmic reticulum vesicles was increased to high levels and the concentration of medium Ca2+ declined. The data presented indicate that binding of 1 Ca2+ to the sarcoplasmic reticulum ATPase is sufficient to activate the pump. Furthermore, these findings support the existence of a control mechanism for the calcium pump that helps to avoid a futile cycle of ATP cleavage with no net transport of calcium and that increases the pumping capability at low concentrations of free Ca2+.
Full text
PDF



Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Berman M. C. Energy coupling and uncoupling of active calcium transport by sarcoplasmic reticulum membranes. Biochim Biophys Acta. 1982 Aug 11;694(1):95–121. doi: 10.1016/0304-4157(82)90015-6. [DOI] [PubMed] [Google Scholar]
- Champeil P., Büschlen-Boucly S., Bastide F., Gary-Bobo C. Sarcoplasmic reticulum ATPase. Spin labeling detection of ligand-induced changes in the relative reactivities of certain sulfhydryl groups. J Biol Chem. 1978 Feb 25;253(4):1179–1186. [PubMed] [Google Scholar]
- Davis D. G., Inesi G., Gulik-Krzywicki T. Lipid molecular motion and enzyme activity in sarcoplasmic reticulum membrane. Biochemistry. 1976 Mar 23;15(6):1271–1276. doi: 10.1021/bi00651a016. [DOI] [PubMed] [Google Scholar]
- Duggan P. F. Caclium uptake and associated adenosine triphosphatase activity in fragmented sarcoplasmic reticulum. Requirement for potassium ions. J Biol Chem. 1977 Mar 10;252(5):1620–1627. [PubMed] [Google Scholar]
- Feher J. J., Briggs F. N. Determinants of calcium loading at steady state in sarcoplasmic reticulum. Biochim Biophys Acta. 1983 Jan 19;727(2):389–402. doi: 10.1016/0005-2736(83)90424-8. [DOI] [PubMed] [Google Scholar]
- Feher J. J., Briggs F. N. The effect of calcium load on the calcium permeability of sarcoplasmic reticulum. J Biol Chem. 1982 Sep 10;257(17):10191–10199. [PubMed] [Google Scholar]
- Freeman D., Bartlett S., Radda G., Ross B. Energetics of sodium transport in the kidney. Saturation transfer 31P-NMR. Biochim Biophys Acta. 1983 Apr 5;762(2):325–336. doi: 10.1016/0167-4889(83)90087-3. [DOI] [PubMed] [Google Scholar]
- Gafni A., Boyer P. D. Characterization of sarcoplasmic reticulum adenosinetriphosphatase purified by selective column adsorption. Biochemistry. 1984 Sep 11;23(19):4362–4367. doi: 10.1021/bi00314a018. [DOI] [PubMed] [Google Scholar]
- Hasselbach W. The reversibility of the sarcoplasmic calcium pump. Biochim Biophys Acta. 1978 Apr 10;515(1):23–53. doi: 10.1016/0304-4157(78)90007-2. [DOI] [PubMed] [Google Scholar]
- Hymel L., Maurer A., Berenski C., Jung C. Y., Fleischer S. Target size of calcium pump protein from skeletal muscle sarcoplasmic reticulum. J Biol Chem. 1984 Apr 25;259(8):4890–4895. [PubMed] [Google Scholar]
- Ikemoto N. Control of the conformational states of the calcium transport enzyme of sarcoplasmic reticulum by calcium. Ann N Y Acad Sci. 1978 Apr 28;307:221–223. doi: 10.1111/j.1749-6632.1978.tb41946.x. [DOI] [PubMed] [Google Scholar]
- Katz A. M., Repke D. I., Dunnett J., Hasselbach W. Dependence of calcium permeability of sarcoplasmic reticulum vesicles on external and internal calcium ion concentrations. J Biol Chem. 1977 Mar 25;252(6):1950–1956. [PubMed] [Google Scholar]
- Kosk-Kosicka D., Kurzmack M., Inesi G. Kinetic characterization of detergent-solubilized sarcoplasmic reticulum adenosinetriphosphatase. Biochemistry. 1983 May 10;22(10):2559–2567. doi: 10.1021/bi00279a037. [DOI] [PubMed] [Google Scholar]
- Kurzmack M., Inesi G. The initial phase of Ca2+-uptake and ATPase activity of sarcoplasmic reticulum vesicles. FEBS Lett. 1977 Feb 15;74(1):35–37. doi: 10.1016/0014-5793(77)80746-1. [DOI] [PubMed] [Google Scholar]
- Lüdi H., Hasselbach W. Excimer formation of ATPase from sarcoplasmic reticulum labeled with N-(3-pyrene)maleinimide. Eur J Biochem. 1983 Jan 17;130(1):5–8. doi: 10.1111/j.1432-1033.1983.tb07108.x. [DOI] [PubMed] [Google Scholar]
- MacLennan D. H., Holland P. C. Calcium transport in sarcoplasmic reticulum. Annu Rev Biophys Bioeng. 1975;4(00):377–404. doi: 10.1146/annurev.bb.04.060175.002113. [DOI] [PubMed] [Google Scholar]
- Makinose M., Hasselbach W. ATP synthesis by the reverse of the sarcoplasmic calcium pump. FEBS Lett. 1971 Jan 30;12(5):271–272. doi: 10.1016/0014-5793(71)80196-5. [DOI] [PubMed] [Google Scholar]
- Martonosi A. N., Chyn T. L., Schibeci A. The calcium transport of sarcoplasmic reticulum. Ann N Y Acad Sci. 1978 Apr 28;307:148–159. doi: 10.1111/j.1749-6632.1978.tb41940.x. [DOI] [PubMed] [Google Scholar]
- McIntosh D. B., Berman M. C. Calcium ion stabilization of the calcium transport system of sarcoplasmic reticulum. J Biol Chem. 1978 Jul 25;253(14):5140–5146. [PubMed] [Google Scholar]
- Meltzer S., Berman M. C. Effects of pH, temperature, and calcium concentration on the stoichiometry of the calcium pump of sarcoplasmic reticulum. J Biol Chem. 1984 Apr 10;259(7):4244–4253. [PubMed] [Google Scholar]
- Navarro J., Toivio-Kinnucan M., Racker E. Effect of lipid composition on the calcium/adenosine 5'-triphosphate coupling ratio of the Ca2+-ATPase of sarcoplasmic reticulum. Biochemistry. 1984 Jan 3;23(1):130–135. doi: 10.1021/bi00296a021. [DOI] [PubMed] [Google Scholar]
- Ohnishi S. T., Gall R. S. Characterization of the catalyzed phosphate assay. Anal Biochem. 1978 Aug 1;88(2):347–356. doi: 10.1016/0003-2697(78)90432-3. [DOI] [PubMed] [Google Scholar]
- Pickart C. M., Jencks W. P. Energetics of the calcium-transporting ATPase. J Biol Chem. 1984 Feb 10;259(3):1629–1643. [PubMed] [Google Scholar]
- Rasmussen H., Gustin M. C. Some aspects of the hormonal control of cellular calcium metabolism. Ann N Y Acad Sci. 1978 Apr 28;307:391–401. doi: 10.1111/j.1749-6632.1978.tb41964.x. [DOI] [PubMed] [Google Scholar]
- Rossi B., de Assis Leone F., Gache C., Lazdunski M. Pseudosubstrates of the sarcoplasmic Ca2+-ATPase as tools to study the coupling between substrate hydrolysis and Ca2+ transport. J Biol Chem. 1979 Apr 10;254(7):2302–2307. [PubMed] [Google Scholar]
- Tada M., Yamamoto T., Tonomura Y. Molecular mechanism of active calcium transport by sarcoplasmic reticulum. Physiol Rev. 1978 Jan;58(1):1–79. doi: 10.1152/physrev.1978.58.1.1. [DOI] [PubMed] [Google Scholar]
- Tanford C. Steady state of an ATP-driven calcium pump: limitations on kinetic and thermodynamic parameters. Proc Natl Acad Sci U S A. 1982 Oct;79(20):6161–6165. doi: 10.1073/pnas.79.20.6161. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tate C. A., Chu A., McMillin-Wood J., Van Winkle W. B., Entman M. L. Evidence for a calcium-sensitive factor which alters the alkaline pH sensitivity of sarcoplasmic reticulum calcium transport. J Biol Chem. 1981 Mar 25;256(6):2934–2939. [PubMed] [Google Scholar]
- Vanderkooi J. M., Ierokomas A., Nakamura H., Martonosi A. Fluorescence energy transfer between Ca2+ transport ATPase molecules in artificial membranes. Biochemistry. 1977 Apr 5;16(7):1262–1267. doi: 10.1021/bi00626a003. [DOI] [PubMed] [Google Scholar]
- Watanabe T., Lewis D., Nakamoto R., Kurzmack M., Fronticelli C., Inesi G. Modulation of calcium binding in sarcoplasmic reticulum adenosinetriphosphatase. Biochemistry. 1981 Nov 10;20(23):6617–6625. doi: 10.1021/bi00526a015. [DOI] [PubMed] [Google Scholar]
- Yamada S., Yamamoto T., Tonomura Y. Reaction mechanism of the Ca2 plus-dependent ATPase of sarcoplasmic reticulum from skeletal muscle. 3. Ca plus-uptake and ATP-splitting. J Biochem. 1970 Jun;67(6):789–794. doi: 10.1093/oxfordjournals.jbchem.a129310. [DOI] [PubMed] [Google Scholar]
- de Meis L., Vianna A. L. Energy interconversion by the Ca2+-dependent ATPase of the sarcoplasmic reticulum. Annu Rev Biochem. 1979;48:275–292. doi: 10.1146/annurev.bi.48.070179.001423. [DOI] [PubMed] [Google Scholar]
