Skip to main content
Current Therapeutic Research, Clinical and Experimental logoLink to Current Therapeutic Research, Clinical and Experimental
. 2009 Feb;70(1):19–28. doi: 10.1016/j.curtheres.2009.02.002

Effects of norepinephrine on galanin expression in dorsal root ganglion neurons in vitro

Xiangdong Yang 1, Zhen Liu 2, Zhenzhong Li 2,a
PMCID: PMC3969976  PMID: 24692829

Abstract

Background: Norepinephrine (NE) is a key neurotransmitter that functionally activates adrenoreceptors expressed in sympathetic neurons. Functional α1-adrenoreceptors are also expressed in dorsal root ganglion (DRG) primary sensory neurons and regulate neurogenic inflammation and nociceptive responses. Galanin is involved in inflammation and nociception. It has been suggested that galanin receptor (GalR) 1 and GalR3 activation induces analgesia at the level of the spinal cord, while activation of GalR2 has a pronociceptive role in the periphery. Whether activation or inhibition of α-adrenoreceptors influences galanin expression remains unknown.

Objective: The aim of the present study was to investigate whether the α-adrenoreceptor agonist NE, the α1-adrenoreceptor antagonist prazosin, and the α2-adrenoreceptor antagonist yohimbine affect galanin expression in primary cultured DRG neurons.

Methods: DRG was dissected from 240 embryonic 15-day-old Wistar rats, cultured as dissociated cells for 2 days, and then exposed to NE (10-4 mol/L) for another 4 days. In the NE + prazosin group and the NE + yohimbine group, DRG neurons were pretreated with prazosin (10-6 mol/L) and yohimbine (10-5 mol/L), respectively, 10 minutes prior to the NE challenge. The neurons cultured continuously in media served as the controls. All of the cultured samples were processed to detect galanin mRNA and galanin peptide expression by reverse transcriptase-polymerase chain reaction and Western blot, respectively. Five samples were tested for each procedure.

Results: Forty samples were prepared for this study and included in the analysis. After 4 days of incubation, mean (SD) galanin mRNA/β-actin mRNA concentration ratio was significantly increased with NE compared with controls (0.3349 [0.0413] vs 0.2411 [0.0519]; P < 0.05). Pretreatment with prazosin seemed to block the effects of NE (0.2522 [0.0496]; P < 0.05 vs NE), while yohimbine did not appear to significantly alter the effects of NE on elevation of galanin mRNA/β-actin mRNA concentration (0.3154 [0.0239]; P < 0.05 vs controls). After 4 days of incubation, galanin/β-actin concentration ratio was significantly higher with NE compared with controls (0.4406 [0.0655] vs 0.2295 [0.0794]; P < 0.01). Pretreatment with prazosin appeared to inhibit NE-induced galanin peptide expression (0.3156 [0.0942]; P < 0.05 vs NE), while yohimbine did not appear to alter the effects of NE on elevation of galanin peptide concentration (0.3700 [0.0533]; P < 0.05 vs controls).

Coclusions: In this small in vitro study, NE, likely due to action on α1-adrenoreceptors but not α2-adrenoreceptors, was associated with an increase in galanin mRNA concentration and galanin peptide expression in these DRG neurons. These findings might be relevant to noradrenergic pain modulation.

Key words: norepinephrine, adrenoreceptor, galanin, dorsal root ganglion

Full Text

The Full Text of this article is available as a PDF (843.3 KB).

References

  • 1.Pertovaara A. Noradrenergic pain modulation. Prog Neurobiol. 2006;80:53–83. doi: 10.1016/j.pneurobio.2006.08.001. [DOI] [PubMed] [Google Scholar]
  • 2.Xie J, Lee YH, Wang C. Differential expression of alpha1-adrenoceptor subtype mRNAs in the dorsal root ganglion after spinal nerve ligation. Mol Brain Res. 2001;93:164–172. doi: 10.1016/s0169-328x(01)00201-7. [DOI] [PubMed] [Google Scholar]
  • 3.Nicholson R, Dixon AK, Spanswick D, Lee K. Noradrenergic receptor mRNA expression in adult rat superficial dorsal horn and dorsal root ganglion neurons. Neurosci Lett. 2005;380:316–321. doi: 10.1016/j.neulet.2005.01.079. [DOI] [PubMed] [Google Scholar]
  • 4.Trevisani M, Campi B, Gatti R. The influence of alpha 1-adrenoreceptors on neuropeptide release from primary sensory neurons of the lower urinary tract. Eur Urol. 2007;52:901–908. doi: 10.1016/j.eururo.2007.01.016. [DOI] [PubMed] [Google Scholar]
  • 5.Pluteanu F, Ristoiu V, Flonta ML, Reid G. Alpha(1)-adrenoceptor-mediated depolarization and beta-mediated hyperpolarization in cultured rat dorsal root ganglion neurones. Neurosci Lett. 2002;329:277–280. doi: 10.1016/s0304-3940(02)00665-1. [DOI] [PubMed] [Google Scholar]
  • 6.Gold MS, Dastmalchi S, Levine JD. Alpha 2-adrenergic receptor subtypes in rat dorsal root and superior cervical ganglion neurons. Pain. 1997;69:179–190. doi: 10.1016/s0304-3959(96)03218-6. [DOI] [PubMed] [Google Scholar]
  • 7.Shi TS, Winzer-Serhan U, Leslie F, Hokfelt T. Distribution and regulation of alpha(2)- adrenoceptors in rat dorsal root ganglia. Pain. 2000;84:319–330. doi: 10.1016/s0304-3959(99)00224-9. [DOI] [PubMed] [Google Scholar]
  • 8.Ma W, Zhang Y, Bantel C, Eisenach JC. Medium and large injured dorsal root ganglion cells increase TRPV-1, accompanied by increased alpha2C-adrenoceptor co-expression and functional inhibition by clonidine. Pain. 2005;113:386–394. doi: 10.1016/j.pain.2004.11.018. [DOI] [PubMed] [Google Scholar]
  • 9.Kingery WS, Guo TZ, Davies MF. The alpha(2A) adrenoceptor and the sympathetic postganglionic neuron contribute to the development of neuropathic heat hyperalgesia in mice. Pain. 2000;85:345–358. doi: 10.1016/S0304-3959(99)00286-9. [DOI] [PubMed] [Google Scholar]
  • 10.Maruo K, Yamamoto H, Yamamoto S. Modulation of P2X receptors via adrenergic pathways in rat dorsal root ganglion neurons after sciatic nerve injury. Pain. 2006;120:106–112. doi: 10.1016/j.pain.2005.10.016. [DOI] [PubMed] [Google Scholar]
  • 11.Birder LA, Perl ER. Expression of alpha2-adrenergic receptors in rat primary afferent neurones after peripheral nerve injury or inflammation. J Physiol. 1999;515:533–542. doi: 10.1111/j.1469-7793.1999.533ac.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 12.Melnikova VI, Raison D, Hardin-Pouzet H. Noradrenergic regulation of galanin expression in the supraoptic nucleus in the rat hypothalamus. An ex vivo study. J Neurosci Res. 2006;83:857–863. doi: 10.1002/jnr.20779. [DOI] [PubMed] [Google Scholar]
  • 13.Kasai M, Mizumura K. Increase in spontaneous action potentials and sensitivity in response to norepinephrine in dorsal root ganglion neurons of adjuvant inflamed rats. Neurosci Res. 2001;39:109–113. doi: 10.1016/s0168-0102(00)00201-7. [DOI] [PubMed] [Google Scholar]
  • 14.Liu HX, Hokfelt T. The participation of galanin in pain processing at the spinal level. Trends Pharmacol Sci. 2002;23:468–474. doi: 10.1016/s0165-6147(02)02074-6. [DOI] [PubMed] [Google Scholar]
  • 15.Holmberg K, Kuteeva E, Brumovsky P. Generation and phenotypic characterization of a galanin overexpressing mouse. Neuroscience. 2005;133:59–77. doi: 10.1016/j.neuroscience.2005.01.062. [DOI] [PubMed] [Google Scholar]
  • 16.Jimenez-Andrade JM, Zhou S, Yamani A. Mechanism by which peripheral galanin increases acute inflammatory pain. Brain Res. 2005;1056:113–117. doi: 10.1016/j.brainres.2005.07.007. [DOI] [PubMed] [Google Scholar]
  • 17.Shi TJ, Hua XY, Lu X. Sensory neuronal phenotype in galanin receptor 2 knockout mice: Focus on dorsal root ganglion neurone development and pain behaviour. Eur J Neurosci. 2006;23:627–636. doi: 10.1111/j.1460-9568.2006.04593.x. [DOI] [PubMed] [Google Scholar]
  • 18.Brumovsky P, Hygge-Blakeman K, Villar MJ. Phenotyping of sensory and sympathetic ganglion neurons of a galanin-overexpressing mouse—possible implications for pain processing. J Chem Neuroanat. 2006;31:243–262. doi: 10.1016/j.jchemneu.2006.02.001. [DOI] [PubMed] [Google Scholar]
  • 19.Yang X, Liu Z, Wang L. Exogenous galanin regulates capsaicin-evoked substance P release from primary cultured dorsal root ganglion neurons. Neuro Endocrinol Lett. 2008;29:911–916. [PubMed] [Google Scholar]
  • 20.Kerekes N, Mennicken F, O'Donnell D. Galanin increases membrane excitability and enhances Ca(2+) currents in adult, acutely dissociated dorsal root ganglion neurons. Eur J Neurosci. 2003;18:2957–2966. doi: 10.1111/j.1460-9568.2003.03057.x. [DOI] [PubMed] [Google Scholar]
  • 21.Liu Z, Li Z. Regulation of galanin and galanin receptor 2 expression by capsaicin in primary cultured dorsal root ganglion neurons. In Vitro Cell Dev Biol Anim. 2008;44:379–384. doi: 10.1007/s11626-008-9118-9. [DOI] [PubMed] [Google Scholar]
  • 22.Niiro N, Nishimura J, Hirano K. Mechanisms of galanin-induced contraction in the rat myometrium. Br J Pharmacol. 1998;124:1623–1632. doi: 10.1038/sj.bjp.0702004. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 23.Sato J, Yajima H, Banik RK. Norepinephrine reduces heat responses of cutaneous C-fiber nociceptors in Sprague-Dawley rats in vitro. Neurosci Lett. 2005;378:111–116. doi: 10.1016/j.neulet.2004.12.014. [DOI] [PubMed] [Google Scholar]
  • 24.Hofstetter C, Boost KA, Hoegl S. Norepinephrine and vasopressin counteract anti-inflammatory effects of isoflurane in endotoxemic rats. Int J Mol Med. 2007;20:597–604. [PubMed] [Google Scholar]
  • 25.Xanthos DN, Bennett GJ, Coderre TJ. Norepinephrine-induced nociception and vasoconstrictor hypersensitivity in rats with chronic post-ischemia pain. Pain. 2008;137:640–651. doi: 10.1016/j.pain.2007.10.031. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 26.Holmes FE, Mahoney SA, Wynick D. Use of genetically engineered transgenic mice to investigate the role of galanin in the peripheral nervous system after injury. Neuropeptides. 2005;39:191–199. doi: 10.1016/j.npep.2005.01.001. [DOI] [PubMed] [Google Scholar]
  • 27.Holmberg K, Shi TJ, Albers KM. Effect of peripheral nerve lesion and lumbar sympathectomy on peptide regulation in dorsal root ganglia in the NGF-overexpressing mouse. Exp Neurol. 2001;167:290–303. doi: 10.1006/exnr.2000.7552. [DOI] [PubMed] [Google Scholar]
  • 28.Macdonald R, Bingham S, Bond BC. Determination of changes in mRNA expression in a rat model of neuropathic pain by Taqman quantitative RT-PCR. Brain Res Mol Brain Res. 2001;90:48–56. doi: 10.1016/s0169-328x(01)00086-9. [DOI] [PubMed] [Google Scholar]
  • 29.Wynick D, Thompson SW, McMahon SB. The role of galanin as a multi-functional neuropeptide in the nervous system. Curr Opin Pharmacol. 2001;1:73–77. doi: 10.1016/s1471-4892(01)00006-6. [DOI] [PubMed] [Google Scholar]
  • 30.Zvarova K, Vizzard MA. Changes in galanin immunoreactivity in rat micturition reflex pathways after cyclophosphamide-induced cystitis. Cell Tissue Res. 2006;324:213–224. doi: 10.1007/s00441-005-0114-z. [DOI] [PubMed] [Google Scholar]
  • 31.Bacon A, Holmes FE, Small CJ. Transgenic over-expression of galanin in injured primary sensory neurons. Neuroreport. 2002;13:2129–2132. doi: 10.1097/00001756-200211150-00028. [DOI] [PubMed] [Google Scholar]
  • 32.Bacon A, Kerr NC, Holmes FE. Characterization of an enhancer region of the galanin gene that directs expression to the dorsal root ganglion and confers responsiveness to axotomy. J Neurosci. 2007;27:6573–6580. doi: 10.1523/JNEUROSCI.1596-07.2007. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 33.Hobson SA, Holmes FE, Kerr NC. Mice deficient for galanin receptor 2 have decreased neurite outgrowth from adult sensory neurons and impaired pain-like behaviour. J Neurochem. 2006;99:1000–1010. doi: 10.1111/j.1471-4159.2006.04143.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 34.Shortland PJ, Baytug B, Krzyzanowska A. ATF3 expression in L4 dorsal root ganglion neurons after L5 spinal nerve transection. Eur J Neurosci. 2006;23:365–373. doi: 10.1111/j.1460-9568.2005.04568.x. [DOI] [PubMed] [Google Scholar]
  • 35.Kerekes N, Landry M, Rydh-Rinder M, Hokfelt T. The effect of NGF, BDNF and bFGF on expression of galanin in cultured rat dorsal root ganglia. Brain Res. 1997;754:131–141. doi: 10.1016/s0006-8993(97)00056-5. [DOI] [PubMed] [Google Scholar]
  • 36.Wang J, Ren Y, Zou X. Sympathetic influence on capsaicin-evoked enhancement of dorsal root reflexes in rats. J Neurophysiol. 2004;92:2017–2026. doi: 10.1152/jn.00145.2004. [DOI] [PubMed] [Google Scholar]
  • 37.Banik RK, Sato J, Yajima H, Mizumura K. Differences between the Lewis and Sprague-Dawley rats in chronic inflammation induced norepinephrine sensitivity of cutaneous C-fiber nociceptors. Neurosci Lett. 2001;299:21–24. doi: 10.1016/s0304-3940(00)01770-5. [DOI] [PubMed] [Google Scholar]
  • 38.Liu BG, Eisenach JC. Hyperexcitability of axotomized and neighboring unaxotomized sensory neurons is reduced days after perineural clonidine at the site of injury. J Neurophysiol. 2005;94:3159–3167. doi: 10.1152/jn.00623.2005. [DOI] [PubMed] [Google Scholar]

Articles from Current Therapeutic Research, Clinical and Experimental are provided here courtesy of Elsevier

RESOURCES