Skip to main content
Current Therapeutic Research, Clinical and Experimental logoLink to Current Therapeutic Research, Clinical and Experimental
. 2009 Dec;70(6):449–459. doi: 10.1016/j.curtheres.2009.12.002

Effects of aminoguanidine and melatonin on intestinal ischemia/reperfusion injury in rats: An assessor-blinded, controlled experimental study

Turan Tunc 1,*, Vural Kesik 1, Hilmi Demirin 2, Nail Ersoz 3, Sebahattin Vurucu 1, Mustafa Kul 4, Bülent Uysal 5, Serdar Sadir 5, Ahmet Guven 6, Emin Oztas 7
PMCID: PMC3969984  PMID: 24692837

Abstract

Background: The reactive oxygen and nitrogen species generated during reperfusion of tissue are characteristic of intestinal ischemia and reperfusion (IIR) injury.

Objective: This study was designed to assess whether the administration of aminoguanidine (AG), a selective nitric oxide synthase inhibitor, and/or melatonin has protective potential in IIR injury.

Methods: Male Wistar albino rats (age, 3–4 weeks; weight, 100–150 g) were divided in a nonrandom fashion into 5 groups of equal size: group 1, IIR injury + AG 100 mg/kg; group 2, IIR injury + melatonin 10 mg/kg; group 3, IIR injury + AG 100 mg/kg + melatonin 10 mg/kg; group 4, sham operation; and group 5, IIR injury alone. Sixty minutes of intestinal ischemia and 4 hours of reperfusion were carried out in all but the sham-operation group. Ileal specimens were obtained from all rats to determine the extent of histologic changes, measure tissue concentrations of malondialdehyde (MDA) and protein carbonyl (PC), and assess the activity of superoxide dismutase (SOD) and glutathione peroxidase (GPx). Specimens were also assessed and scored by a pathologist blinded to the experiment and the data.

Results: Forty rats were divided into 5 groups of 8 each; all 40 survived until study end. In the IIR injury-alone group, mean (SD) MDA concentration and PC content were significantly higher than that of the sham-operation group, and SOD and GPx activity were significantly lower: MDA concentration, 0.86 (0.03) versus 0.54 (0.01) mmol/g protein, respectively; PC content, 0.60 (0.02) versus 0.34 (0.01) mmol/g protein; SOD activity, 104.33 (43.14) versus 2954.72 (109.55) U/g protein; and GPx activity, 10.44 (0.63) versus 24.34 (1.77) U/g protein (all, P < 0.001). Administration of AG, melatonin, and the AG/melatonin combination was associated with significantly higher SOD (1802.31 [102.35], 1776.50 [58.41], and 1924.28 [98.10] U/g protein, respectively) and GPx (17.36 [1.23], 15.96 [1.08], and 18.06 [1.72] U/g protein) activity and significantly lower MDA concentration (0.62 [0.02], 0.64 [0.02], and 0.56 [0.01] mmol/g protein) and PC content (0.53 [0.03], 0.51 [0.01], and 0.49 [0.02] mmol/g protein) compared with the IIR injury-alone group (P < 0.001). Mean intestinal mucosal injury scores were significantly lower in the 3 treatment groups (2.12 [0.35], 1.75 [0.46], and 1.12 [0.35]) compared with the IIR injury-alone group (3.87 [0.35]; all, P < 0.001).

Conclusion: In this study, AG, melatonin, or both administered in combination were associated with improvements in oxidative markers in this rat model of IIR injury.

Keywords: reperfusion injury, melatonin, intestines, aminoguanidine

Full Text

The Full Text of this article is available as a PDF (504.6 KB).

References

  • 1.Mallick IH, Yang W, Winslet MC, Seifalian AM. Ischemia-reperfusion injury of the intestine and protective strategies against injury. Dig Dis Sci. 2004;49:1359–1377. doi: 10.1023/b:ddas.0000042232.98927.91. [DOI] [PubMed] [Google Scholar]
  • 2.Ceylan H, Yüncü M, Gürel A. Effects of whole-body hypoxic preconditioning on hypoxia/reoxygenation-induced intestinal injury in newborn rats. Eur J Pediatr Surg. 2005;15:325–332. doi: 10.1055/s-2005-865820. [DOI] [PubMed] [Google Scholar]
  • 3.Cabeza J, Motilva V, Martin MJ, de la Lastra CA. Mechanisms involved in gastric protection of melatonin against oxidant stress by ischemia-reperfusion in rats. Life Sci. 2001;68:1405–1415. doi: 10.1016/s0024-3205(01)00935-3. [DOI] [PubMed] [Google Scholar]
  • 4.Ballabeni V, Barocelli E, Bertoni S, Impicciatore M. Alterations of intestinal motor responsiveness in a model of mild mesenteric ischemia/reperfusion in rats. Life Sci. 2002;71:2025–2035. doi: 10.1016/s0024-3205(02)01966-5. [DOI] [PubMed] [Google Scholar]
  • 5.Erdogan H, Fadillioglu E, Yagmurca M. Protein oxidation and lipid peroxidation after renal ischemia-reperfusion injury: Protective effects of erdosteine and N-acetylcysteine. Urol Res. 2006;34:41–46. doi: 10.1007/s00240-005-0031-3. [DOI] [PubMed] [Google Scholar]
  • 6.Işlekel H, Işlekel S, Güner G, Ozdamar N. Alterations in superoxide dismutase, glutathione peroxidase and catalase activities in experimental cerebral ischemia-reperfusion. Res Exp Med (Berl). 1999;199:167–176. doi: 10.1007/s004330050121. [DOI] [PubMed] [Google Scholar]
  • 7.Schoenberg MH, Beger HG. Reperfusion injury after intestinal ischemia. Crit Care Med. 1993;21:1376–1386. doi: 10.1097/00003246-199309000-00023. [DOI] [PubMed] [Google Scholar]
  • 8.McCord JM. Oxygen-derived free radicals in postischemic tissue injury. N Engl J Med. 1985;312:159–163. doi: 10.1056/NEJM198501173120305. [DOI] [PubMed] [Google Scholar]
  • 9.Lipton P. Ischemic cell death in brain neurons. Physiol Rev. 1999;79:1431–1568. doi: 10.1152/physrev.1999.79.4.1431. [DOI] [PubMed] [Google Scholar]
  • 10.Draper HH, Hadley M. Malondialdehyde determination as index of lipid peroxidation. Methods Enzymol. 1990;186:421–431. doi: 10.1016/0076-6879(90)86135-i. [DOI] [PubMed] [Google Scholar]
  • 11.Guven A, Demirbag S, Uysal B. Effect of 3-amino benzamide, a poly(adenosine diphosphateribose) polymerase inhibitor, in experimental caustic esophageal burn. J Pediatr Surg. 2008;43:1474–1479. doi: 10.1016/j.jpedsurg.2007.10.001. [DOI] [PubMed] [Google Scholar]
  • 12.Levine RL, Garland D, Oliver CN. Determination of carbonyl content in oxidatively modified proteins. Methods Enzymol. 1990;186:464–478. doi: 10.1016/0076-6879(90)86141-h. [DOI] [PubMed] [Google Scholar]
  • 13.Schmeling DJ, Caty MG, Oldham KT, Guice KS. Cytoprotection by diclofenac sodium after intestinal ischemia/reperfusion injury. J Pediatr Surg. 1994;29:1044–1048. doi: 10.1016/0022-3468(94)90276-3. [DOI] [PubMed] [Google Scholar]
  • 14.Koltuksuz U, Ozen S, Uz E. Caffeic acid phenethyl ester prevents intestinal ischemia reperfusion injury in rats. J Pediatr Surg. 1999;34:1458–1462. doi: 10.1016/s0022-3468(99)90103-3. [DOI] [PubMed] [Google Scholar]
  • 15.Hammerman C, Goldschmidt D, Caplan MS. Amelioration of ischemia-reperfusion injury in rat intestine by pentoxifylline-mediated inhibition of xanthine oxidase. J Pediatr Gastroenterol Nutr. 1999;29:69–74. doi: 10.1097/00005176-199907000-00017. [DOI] [PubMed] [Google Scholar]
  • 16.Kazez A, Demirbağ M, Ustündağ B. The role of melatonin in prevention of intestinal ischemia-reperfusion injury in rats. J Pediatr Surg. 2000;35:1444–1448. doi: 10.1053/jpsu.2000.16410. [DOI] [PubMed] [Google Scholar]
  • 17.Abraham P, Rabi S, Selvakumar D. Protective effect of aminoguanidine against oxidative stress and bladder injury in cyclophosphamide-induced hemorrhagic cystitis in rat. Cell Biochem Funct. 2009;27:56–62. doi: 10.1002/cbf.1534. [DOI] [PubMed] [Google Scholar]
  • 18.Onem Y, Ipcioglu OM, Haholu A. Posttreatment with aminoguanidine attenuates renal ischemia/reperfusion injury in rats. Ren Fail. 2009;31:50–53. doi: 10.1080/08860220802546313. [DOI] [PubMed] [Google Scholar]
  • 19.Atasayar S, Gürer-Orhan H, Orhan H. Preventive effect of aminoguanidine compared to vitamin E and C on cisplatin-induced nephrotoxicity in rats. Exp Toxicol Pathol. 2009;61:23–32. doi: 10.1016/j.etp.2008.04.016. [DOI] [PubMed] [Google Scholar]
  • 20.Sahna E, Parlakpinar H, Turkoz Y, Acet A. Protective effects of melatonin on myocardial ischemia/reperfusion induced infarct size and oxidative changes. Physiol Res. 2005;54:491–495. [PubMed] [Google Scholar]
  • 21.Reiter RJ, Tan DX. Melatonin: A novel protective agent against oxidative injury of the ischemic/reperfused heart. Cardiovasc Res. 2003;58:10–19. doi: 10.1016/s0008-6363(02)00827-1. [DOI] [PubMed] [Google Scholar]
  • 22.Sahna E, Parlakpinar H, Cihan OF. Effects of aminoguanidine against renal ischaemia-reperfusion injury in rats. Cell Biochem Funct. 2006;24:137–141. doi: 10.1002/cbf.1196. [DOI] [PubMed] [Google Scholar]
  • 23.Colak C, Parlakpinar H, Ozer MK. Investigating the protective effect of melatonin on liver injury related to myocardial ischemia-reperfusion. Med Sci Monit. 2007;13:BR251–BR254. [PubMed] [Google Scholar]
  • 24.Lowry OH, Rosebrough NJ, Farr AL, Randall RJ. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951;193:265–275. [PubMed] [Google Scholar]
  • 25.Ohkawa H, Ohishi N, Yagi K. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem. 1979;95:351–358. doi: 10.1016/0003-2697(79)90738-3. [DOI] [PubMed] [Google Scholar]
  • 26.Sun Y, Oberley LW, Li Y. A simple method for clinical assay of superoxide dismutase. Clin Chem. 1988;34:497–500. [PubMed] [Google Scholar]
  • 27.Paglia DE, Valentine WN. Studies on the quantitative and qualitative characterization of erythrocyte glutathione peroxidase. J Lab Clin Med. 1967;70:158–169. [PubMed] [Google Scholar]
  • 28.Chiu CJ, McArdle AH, Brown R. Intestinal mucosal lesion in low-flow states. I. A morphological, hemodynamic, and metabolic reappraisal. Arch Surg. 1970;101:478–483. doi: 10.1001/archsurg.1970.01340280030009. [DOI] [PubMed] [Google Scholar]
  • 29.Barocelli E, Ballabeni V, Ghizzardi P. The selective inhibition of inducible nitric oxide synthase prevents intestinal ischemia-reperfusion injury in mice. Nitric Oxide. 2006;14:212–218. doi: 10.1016/j.niox.2005.11.006. [DOI] [PubMed] [Google Scholar]
  • 30.Radi R, Beckman JS, Bush KM, Freeman BA. Peroxynitrite-induced membrane lipid peroxidation: The cytotoxic potential of superoxide and nitric oxide. Arch Biochem Biophys. 1991;288:481–487. doi: 10.1016/0003-9861(91)90224-7. [DOI] [PubMed] [Google Scholar]
  • 31.Reiter RJ, Tan DX, Manchester LC, Qi W. Biochemical reactivity of melatonin with reactive oxygen and nitrogen species: A review of the evidence. Cell Biochem Biophys. 2001;34:237–256. doi: 10.1385/CBB:34:2:237. [DOI] [PubMed] [Google Scholar]
  • 32.Radi R. Nitric oxide, oxidants, and protein tyrosine nitration. Proc Natl Acad Sci U S A. 2004;101:4003–4008. doi: 10.1073/pnas.0307446101. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 33.Radi R, Cassina A, Hodara R. Peroxynitrite reactions and formation in mitochondria. Free Radic Biol Med. 2002;33:1451–1464. doi: 10.1016/s0891-5849(02)01111-5. [DOI] [PubMed] [Google Scholar]
  • 34.Trujillo M, Ferrer-Sueta G, Radi R. Peroxynitrite detoxification and its biologic implications. Antioxid Redox Signal. 2008;10:1607–1620. doi: 10.1089/ars.2008.2060. [DOI] [PubMed] [Google Scholar]
  • 35.Allen BW, Demchenko IT, Piantadosi CA. Two faces of nitric oxide: Implications for cellular mechanisms of oxygen toxicity. J Appl Physiol. 2009;106:662–667. doi: 10.1152/japplphysiol.91109.2008. [DOI] [PubMed] [Google Scholar]
  • 36.Varma SD, Hegde KR. Lens thiol depletion by peroxynitrite. Protective effect of pyruvate. Mol Cell Biochem. 2007;298:199–204. doi: 10.1007/s11010-006-9352-y. [DOI] [PubMed] [Google Scholar]
  • 37.Reinartz M, Ding Z, Flögel U. Nitrosative stress leads to protein glutathiolation, increased s-nitrosation, and up-regulation of peroxiredoxins in the heart. J Biol Chem. 2008;283:17440–17449. doi: 10.1074/jbc.M800126200. [DOI] [PubMed] [Google Scholar]
  • 38.Hung CR. Role of gastric oxidative stress and nitric oxide in formation of hemorrhagic erosion in rats with ischemic brain. World J Gastroenterol. 2006;12:574–581. doi: 10.3748/wjg.v12.i4.574. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 39.Eroglu C, Yildiz OG, Saraymen R. Aminoguanidine ameliorates radiation-induced oxidative lung damage in rats. Clin Invest Med. 2008;31:E182–E188. doi: 10.25011/cim.v31i4.4778. [DOI] [PubMed] [Google Scholar]
  • 40.Courderot-Masuyer C, Dalloz F, Maupoil V, Rochette L. Antioxidant properties of aminoguanidine. Fundam Clin Pharmacol. 1999;13:535–540. doi: 10.1111/j.1472-8206.1999.tb00358.x. [DOI] [PubMed] [Google Scholar]
  • 41.Li C, Jackson RM. Reactive species mechanisms of cellular hypoxia-reoxygenation injury. Am J Physiol Cell Physiol. 2002;282:C227–C241. doi: 10.1152/ajpcell.00112.2001. [DOI] [PubMed] [Google Scholar]
  • 42.Polat A, Parlakpinar H, Tasdemir S. Protective role of aminoguanidine on gentamicininduced acute renal failure in rats. Acta Histochem. 2006;108:365–371. doi: 10.1016/j.acthis.2006.06.005. [DOI] [PubMed] [Google Scholar]
  • 43.Mansour MA, Mostafa AM, Nagi MN. Protective effect of aminoguanidine against nephrotoxicity induced by cisplatin in normal rats. Comp Biochem Physiol C Toxicol Pharmacol. 2002;132:123–128. doi: 10.1016/s1532-0456(02)00062-5. [DOI] [PubMed] [Google Scholar]
  • 44.Akpinar D, Yargicoglu P, Derin N. Effect of aminoguanidine on visual evoked potentials (VEPs), antioxidant status and lipid peroxidation in rats exposed to chronic restraint stress. Brain Res. 2007;1186:87–94. doi: 10.1016/j.brainres.2007.09.066. [DOI] [PubMed] [Google Scholar]
  • 45.Reiter RJ, Tan DX, Kim SJ, Qi W. Melatonin as a pharmacological agent against oxidative damage to lipids and DNA. Proc West Pharmacol Soc. 1998;41:229–236. [PubMed] [Google Scholar]
  • 46.Reiter RJ. Cytoprotective properties of melatonin: Presumed association with oxidative damage and aging. Nutrition. 1998;14:691–696. doi: 10.1016/s0899-9007(98)00064-1. [DOI] [PubMed] [Google Scholar]
  • 47.Cuzzocrea S, Reiter RJ. Pharmacological action of melatonin in shock, inflammation and ischemia/reperfusion injury. Eur J Pharmacol. 2001;426:1–10. doi: 10.1016/s0014-2999(01)01175-x. [DOI] [PubMed] [Google Scholar]
  • 48.Théroux P. Protection of the myocardial cell during ischemia. Am J Cardiol. 1999;83:3G–9G. doi: 10.1016/s0002-9149(99)00246-5. [DOI] [PubMed] [Google Scholar]

Articles from Current Therapeutic Research, Clinical and Experimental are provided here courtesy of Elsevier

RESOURCES