Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1985 Jan;82(1):253–257. doi: 10.1073/pnas.82.1.253

Transmissible spongiform encephalopathy in the gray tremor mutant mouse.

R L Sidman, H C Kinney, H O Sweet
PMCID: PMC397011  PMID: 3855546

Abstract

Gray tremor (gt) is an autosomal recessive mutation in the mouse linked to caracul (Ca) on chromosome 15. The complex mutant phenotype includes pigmentation defects, tremor, seizures, hypo- and dysmyelination in central and peripheral nervous systems, spongiform encephalopathy, and early death. The heterozygote (+/gt) is phenotypically normal but develops a mild spongiform encephalopathy from 2 months of age onward. The pigmentation and myelination disorders indicate that the gt genetic locus is active neonatally and probably earlier. This report focuses mainly on the later-expressed vacuolating disorder, which most closely mimics in tissue distribution, histopathology, and ultrastructure the spongiform encephalopathies caused by unconventional transmissible agents. This lesion was produced in genetically normal mice in a transmission experiment: of 99 neonatal mice inoculated intracerebrally with gt/gt brain homogenate, all 7 mice of three strains (BALB/cBy, C3HeB/FeJ, and C57BL/6J) allowed to survive for the unusually long interval of 682-721 days after inoculation, developed spongiform changes distributed as in the mutant phenotype. The gray tremor mutant presents a naturally occurring spongiform encephalopathy whose expression is determined by the interaction of genetic factors and a transmissible agent.

Full text

PDF
253

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Andrews J. M., Gardner M. B. Lower motor neuron degeneration associated with type C RNA virus infection in mice: neuropathological features. J Neuropathol Exp Neurol. 1974 Apr;33(2):285–307. doi: 10.1097/00005072-197404000-00007. [DOI] [PubMed] [Google Scholar]
  2. Brooks B. R., Swarz J. R., Johnson R. T. Spongiform polioencephalomyelopathy caused by a murine retrovirus. I. Pathogenesis of infection in newborn mice. Lab Invest. 1980 Nov;43(5):480–486. [PubMed] [Google Scholar]
  3. Friede R. L., Samorajski T. Relation between the number of myelin lamellae and axon circumference in fibers of vagus and sciatic nerves of mice. J Comp Neurol. 1967 Jul;130(3):223–231. doi: 10.1002/cne.901300304. [DOI] [PubMed] [Google Scholar]
  4. Gardner M. B., Henderson B. E., Officer J. E., Rongey R. W., Parker J. C., Oliver C., Estes J. D., Huebner R. J. A spontaneous lower motor neuron disease apparently caused by indigenous type-C RNA virus in wild mice. J Natl Cancer Inst. 1973 Oct;51(4):1243–1254. doi: 10.1093/jnci/51.4.1243. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Hartley J. W., Rowe W. P., Huebner R. J. Host-range restrictions of murine leukemia viruses in mouse embryo cell cultures. J Virol. 1970 Feb;5(2):221–225. doi: 10.1128/jvi.5.2.221-225.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Kimberlin R. H. Scrapie agent: prions or virinos? Nature. 1982 May 13;297(5862):107–108. doi: 10.1038/297107a0. [DOI] [PubMed] [Google Scholar]
  7. Lampert P. W., Gajdusek D. C., Gibbs C. J., Jr Subacute spongiform virus encephalopathies. Scrapie, Kuru and Creutzfeldt-Jakob disease: a review. Am J Pathol. 1972 Sep;68(3):626–652. [PMC free article] [PubMed] [Google Scholar]
  8. Manuelidis E. E., Gorgacz E. J., Manuelidis L. Transmission of Creutzfeldt-Jakob disease with scrapie-like syndromes to mice. Nature. 1978 Feb 23;271(5647):778–779. doi: 10.1038/271778a0. [DOI] [PubMed] [Google Scholar]
  9. McKinley M. P., Bolton D. C., Prusiner S. B. A protease-resistant protein is a structural component of the scrapie prion. Cell. 1983 Nov;35(1):57–62. doi: 10.1016/0092-8674(83)90207-6. [DOI] [PubMed] [Google Scholar]
  10. Merz P. A., Somerville R. A., Wisniewski H. M., Manuelidis L., Manuelidis E. E. Scrapie-associated fibrils in Creutzfeldt-Jakob disease. Nature. 1983 Dec 1;306(5942):474–476. doi: 10.1038/306474a0. [DOI] [PubMed] [Google Scholar]
  11. Officer J. E., Tecson N., Estes J. D., Fontanilla E., Rongey R. W., Gardner M. B. Isolation of a neurotropic type C virus. Science. 1973 Sep 7;181(4103):945–947. doi: 10.1126/science.181.4103.945. [DOI] [PubMed] [Google Scholar]
  12. Oldstone M. B., Lampert P. W., Lee S., Dixon F. J. Pathogenesis of the slow disease of the central nervous system associated with WM 1504 E virus. I. Relationship of strain susceptibility and replication to disease. Am J Pathol. 1977 Jul;88(1):193–212. [PMC free article] [PubMed] [Google Scholar]
  13. Prusiner S. B. Novel proteinaceous infectious particles cause scrapie. Science. 1982 Apr 9;216(4542):136–144. doi: 10.1126/science.6801762. [DOI] [PubMed] [Google Scholar]
  14. Rohwer R. G. Scrapie infectious agent is virus-like in size and susceptibility to inactivation. Nature. 1984 Apr 12;308(5960):658–662. doi: 10.1038/308658a0. [DOI] [PubMed] [Google Scholar]
  15. SIDMAN R. L., DICKIE M. M., APPEL S. H. MUTANT MICE (QUAKING AND JIMPY) WITH DEFICIENT MYELINATION IN THE CENTRAL NERVOUS SYSTEM. Science. 1964 Apr 17;144(3616):309–311. doi: 10.1126/science.144.3616.309. [DOI] [PubMed] [Google Scholar]
  16. Tateishi J., Sato Y., Koga M., Doi H., Ohta M. Experimental transmission of human subacute spongiform encephalopathy to small rodents. I. Clinical and histological observations. Acta Neuropathol. 1980;51(2):127–134. doi: 10.1007/BF00690454. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES