Abstract
Phospholipase A2 (PLA2; phosphatide 2-acylhydrolase, EC 3.1.1.4) activity from human platelets increases significantly when the enzyme is separated from an endogenous inhibitor(s). The inhibitor, associated mainly with a particulate fraction, has now been identified as a mixture of unsaturated fatty acids. Treatment of the inhibitor with trypsin, RNase, DNase, or heat did not diminish its inhibitory activity, which was extractable by organic solvents. Incubation of PLA2 with phospholipids or various neutral lipids, including saturated fatty acids, had little or no effect on enzymatic activity. In contrast, unsaturated fatty acids such as palmitoleic acid (16:1), oleic acid (18:1), linoleic acid (18:2), linolenic acid (18:3), arachidonic acid (20:4), all of which were detected in the particulate fraction, or longer chained unsaturated fatty acids inhibited PLA2 activity by 50% at approximately equal to 5 X 10(-7) M. The level of unsaturated fatty acids in the inhibitor fraction was equivalent to approximately equal to 10(-4) M, apparently sufficient to effectively inhibit PLA2 activity. Methylation of unsaturated fatty acids caused a complete loss of inhibitory activity, and subsequent demethylation restored the activity, suggesting that a free carboxyl group was necessary. Inhibition of PLA2 by unsaturated fatty acids appeared to be noncompetitive. PLA2 absolutely required Ca2+ for activity; the inhibition by unsaturated fatty acids was not reversed by Ca2+. The finding that unsaturated fatty acids are potent inhibitors of PLA2 would explain its generally low activity in human platelet extracts and its marked increase of activity during the course of enzyme purification.
Full text
PDF




Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Ahern D. G., Downing D. T. Inhibition of prostaglandin biosynthesis by eicosa-5,8,11,14-tetraynoic acid. Biochim Biophys Acta. 1970 Sep 8;210(3):456–461. doi: 10.1016/0005-2760(70)90042-1. [DOI] [PubMed] [Google Scholar]
- BLIGH E. G., DYER W. J. A rapid method of total lipid extraction and purification. Can J Biochem Physiol. 1959 Aug;37(8):911–917. doi: 10.1139/o59-099. [DOI] [PubMed] [Google Scholar]
- Ballou L. R., Cheung W. Y. Marked increase of human platelet phospholipase A2 activity in vitro and demonstration of an endogenous inhibitor. Proc Natl Acad Sci U S A. 1983 Sep;80(17):5203–5207. doi: 10.1073/pnas.80.17.5203. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bell R. L., Kennerly D. A., Stanford N., Majerus P. W. Diglyceride lipase: a pathway for arachidonate release from human platelets. Proc Natl Acad Sci U S A. 1979 Jul;76(7):3238–3241. doi: 10.1073/pnas.76.7.3238. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bell R. L., Majerus P. W. Thrombin-induced hydrolysis of phosphatidylinositol in human platelets. J Biol Chem. 1980 Mar 10;255(5):1790–1792. [PubMed] [Google Scholar]
- Billah M. M., Lapetina E. G., Cuatrecasas P. Phospholipase A2 and phospholipase C activities of platelets. Differential substrate specificity, Ca2+ requirement, pH dependence, and cellular localization. J Biol Chem. 1980 Nov 10;255(21):10227–10231. [PubMed] [Google Scholar]
- Bills T. K., Smith J. B., Silver M. J. Metabolism of [14C]arachidonic acid by human platelets. Biochim Biophys Acta. 1976 Feb 23;424(2):303–314. doi: 10.1016/0005-2760(76)90198-3. [DOI] [PubMed] [Google Scholar]
- Bills T. K., Smith J. B., Silver M. J. Selective release of archidonic acid from the phospholipids of human platelets in response to thrombin. J Clin Invest. 1977 Jul;60(1):1–6. doi: 10.1172/JCI108745. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Broekman M. J., Ward J. W., Marcus A. J. Fatty acid composition of phosphatidylinositol and phosphatidic acid in stimulated platelets. Persistence of arachidonyl-stearyl structure. J Biol Chem. 1981 Aug 25;256(16):8271–8274. [PubMed] [Google Scholar]
- Broekman M. J., Ward J. W., Marcus A. J. Phospholipid metabolism in stimulated human platelets. Changes in phosphatidylinositol, phosphatidic acid, and lysophospholipids. J Clin Invest. 1980 Aug;66(2):275–283. doi: 10.1172/JCI109854. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Corey E. J., Niwa H., Falck J. R., Mioskowski C., Arai Y., Marfat A. Recent studies on the chemical synthesis of eicosanoids. Adv Prostaglandin Thromboxane Res. 1980;6:19–25. [PubMed] [Google Scholar]
- Derksen A., Cohen P. Patterns of fatty acid release from endogenous substrates by human platelet homogenates and membranes. J Biol Chem. 1975 Dec 25;250(24):9342–9347. [PubMed] [Google Scholar]
- Flower R. J., Vane J. R. Inhibition of prostaglandin biosynthesis. Biochem Pharmacol. 1974 May 15;23(10):1439–1450. doi: 10.1016/0006-2952(74)90381-5. [DOI] [PubMed] [Google Scholar]
- Franson R., Patriarca P., Elsbach P. Phospholipid metabolism by phagocytic cells. Phospholipases A2 associated with rabbit polymorphonuclear leukocyte granules. J Lipid Res. 1974 Jul;15(4):380–388. [PubMed] [Google Scholar]
- Lapetina E. G., Billah M. M., Cuatrecasas P. The initial action of thrombin on platelets. Conversion of phosphatidylinositol to phosphatidic acid preceding the production of arachidonic acid. J Biol Chem. 1981 May 25;256(10):5037–5040. [PubMed] [Google Scholar]
- Marcus A. J., Ullman H. L., Safier L. B. Lipid composition of subcellular particles of human blood platelets. J Lipid Res. 1969 Jan;10(1):108–114. [PubMed] [Google Scholar]
- McKean M. L., Smith J. B., Silver M. J. Formation of lysophosphatidylcholine by human platelets in response to thrombin. Support for the phospholipase A2 pathway for the liberation of arachidonic acid. J Biol Chem. 1981 Feb 25;256(4):1522–1524. [PubMed] [Google Scholar]
- Pace-Asciak C., Wolfe L. S. Inhibition of prostaglandin synthesis by oleic, linoleic and linolenic acids. Biochim Biophys Acta. 1968 Jul 1;152(4):784–787. doi: 10.1016/0005-2760(68)90126-4. [DOI] [PubMed] [Google Scholar]
- Rittenhouse-Simmons S. Indomethacin-induced accumulation of diglyceride in activated human platelets. The role of diglyceride lipase. J Biol Chem. 1980 Mar 25;255(6):2259–2262. [PubMed] [Google Scholar]
- Rittenhouse-Simmons S. Production of diglyceride from phosphatidylinositol in activated human platelets. J Clin Invest. 1979 Apr;63(4):580–587. doi: 10.1172/JCI109339. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Walenga R. W., Opas E. E., Feinstein M. B. Differential effects of calmodulin antagonists on phospholipases A2 and C in thrombin-stimulated platelets. J Biol Chem. 1981 Dec 10;256(23):12523–12528. [PubMed] [Google Scholar]
