Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1996 Apr 2;93(7):2759–2763. doi: 10.1073/pnas.93.7.2759

Occurrence of poly(alpha2,8-deaminoneuraminic acid) in mammalian tissues: widespread and developmentally regulated but highly selective expression on glycoproteins.

M Ziak 1, B Qu 1, X Zuo 1, C Zuber 1, A Kanamori 1, K Kitajima 1, S Inoue 1, Y Inoue 1, J Roth 1
PMCID: PMC39705  PMID: 8610115

Abstract

In tissues of higher organisms homopolymers of alpha2,8-linked N-acetylneuraminic acid can be found as a posttranslational modification on selected proteins. We report here the discovery of homopolymers of alpha2,8-linked deaminoneuraminic acid [poly(alpha2,8-KDN)] in various tissues derived from all three germ layers in vertebrates including mammals. The monoclonal antibody kdn8kdn in conjunction with a bacterial KDNase permitted the detection of poly(alpha2,8-KDN) by immunohistochemistry and immunoblotting. Further evidence for the existence of poly(alpha2,8-KDN) was obtained by gas/liquid chromatography. The poly(alpha2,8-KDN) glycan was detectable in all tissues studied with the exception of mucus-producing cells present in various organs, the extracellular matrix, and basement membranes. However, in certain organs such as muscle, kidney, lung, and brain its expression was developmentally regulated. Despite its widespread tissue distribution, the poly(alpha2,8-KDN) glycan was detected on a single 150-kDa glycoprotein except for a single >350-kDa glycoprotein in kidney, which makes it most distinctive among polysialic acids. The ubiquitous yet selective expression may be indicative of a general function of the poly(alpha2,8-KDN)-bearing glycoproteins.

Full text

PDF
2759

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Cremer H., Lange R., Christoph A., Plomann M., Vopper G., Roes J., Brown R., Baldwin S., Kraemer P., Scheff S. Inactivation of the N-CAM gene in mice results in size reduction of the olfactory bulb and deficits in spatial learning. Nature. 1994 Feb 3;367(6462):455–459. doi: 10.1038/367455a0. [DOI] [PubMed] [Google Scholar]
  2. Eckhardt M., Mühlenhoff M., Bethe A., Koopman J., Frosch M., Gerardy-Schahn R. Molecular characterization of eukaryotic polysialyltransferase-1. Nature. 1995 Feb 23;373(6516):715–718. doi: 10.1038/373715a0. [DOI] [PubMed] [Google Scholar]
  3. Finne J. Occurrence of unique polysialosyl carbohydrate units in glycoproteins of developing brain. J Biol Chem. 1982 Oct 25;257(20):11966–11970. [PubMed] [Google Scholar]
  4. Frosch M., Görgen I., Boulnois G. J., Timmis K. N., Bitter-Suermann D. NZB mouse system for production of monoclonal antibodies to weak bacterial antigens: isolation of an IgG antibody to the polysaccharide capsules of Escherichia coli K1 and group B meningococci. Proc Natl Acad Sci U S A. 1985 Feb;82(4):1194–1198. doi: 10.1073/pnas.82.4.1194. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Hallenbeck P. C., Vimr E. R., Yu F., Bassler B., Troy F. A. Purification and properties of a bacteriophage-induced endo-N-acetylneuraminidase specific for poly-alpha-2,8-sialosyl carbohydrate units. J Biol Chem. 1987 Mar 15;262(8):3553–3561. [PubMed] [Google Scholar]
  6. Hoffman S., Sorkin B. C., White P. C., Brackenbury R., Mailhammer R., Rutishauser U., Cunningham B. A., Edelman G. M. Chemical characterization of a neural cell adhesion molecule purified from embryonic brain membranes. J Biol Chem. 1982 Jul 10;257(13):7720–7729. [PubMed] [Google Scholar]
  7. Husmann M., Roth J., Kabat E. A., Weisgerber C., Frosch M., Bitter-Suermann D. Immunohistochemical localization of polysialic acid in tissue sections: differential binding to polynucleotides and DNA of a murine IgG and a human IgM monoclonal antibody. J Histochem Cytochem. 1990 Feb;38(2):209–215. doi: 10.1177/38.2.1688896. [DOI] [PubMed] [Google Scholar]
  8. Inoue S., Iwasaki M. Isolation of a novel glycoprotein from the eggs of rainbow trout: occurrence of disialosyl groups on all carbohydrate chains. Biochem Biophys Res Commun. 1978 Aug 14;83(3):1018–1023. doi: 10.1016/0006-291x(78)91497-3. [DOI] [PubMed] [Google Scholar]
  9. Inoue S., Kanamori A., Kitajima K., Inoue Y. KDN-glycoprotein: a novel deaminated neuraminic acid-rich glycoprotein isolated from vitelline envelope of rainbow trout eggs. Biochem Biophys Res Commun. 1988 May 31;153(1):172–176. doi: 10.1016/s0006-291x(88)81204-x. [DOI] [PubMed] [Google Scholar]
  10. Kanamori A., Inoue S., Iwasaki M., Kitajima K., Kawai G., Yokoyama S., Inoue Y. Deaminated neuraminic acid-rich glycoprotein of rainbow trout egg vitelline envelope. Occurrence of a novel alpha-2,8-linked oligo(deaminated neuraminic acid) structure in O-linked glycan chains. J Biol Chem. 1990 Dec 15;265(35):21811–21819. [PubMed] [Google Scholar]
  11. Kanamori A., Inoue S., Xulei Z., Zuber C., Roth J., Kitajima K., Ye J., Troy F. A., 2nd, Inoue Y. Monoclonal antibody specific for alpha 2-->8-linked oligo deaminated neuraminic acid (KDN) sequences in glycoproteins. Preparation and characterization of a monoclonal antibody and its application in immunohistochemistry. Histochemistry. 1994 Jun;101(5):333–340. doi: 10.1007/BF00268994. [DOI] [PubMed] [Google Scholar]
  12. Kanamori A., Kitajima K., Inoue S., Inoue Y. Isolation and characterization of deaminated neuraminic acid-rich glycoprotein (KDN-gp-OF) in the ovarian fluid of rainbow trout (Salmo gairdneri). Biochem Biophys Res Commun. 1989 Oct 31;164(2):744–749. doi: 10.1016/0006-291x(89)91522-2. [DOI] [PubMed] [Google Scholar]
  13. Kitagawa H., Paulson J. C. Differential expression of five sialyltransferase genes in human tissues. J Biol Chem. 1994 Jul 8;269(27):17872–17878. [PubMed] [Google Scholar]
  14. Kitajima K., Kuroyanagi H., Inoue S., Ye J., Troy F. A., 2nd, Inoue Y. Discovery of a new type of sialidase, "KDNase," which specifically hydrolyzes deaminoneuraminyl (3-deoxy-D-glycero-D-galacto-2-nonulosonic acid) but not N-acylneuraminyl linkages. J Biol Chem. 1994 Aug 26;269(34):21415–21419. [PubMed] [Google Scholar]
  15. Kitazume S., Kitajima K., Inoue S., Troy F. A., 2nd, Cho J. W., Lennarz W. J., Inoue Y. Identification of polysialic acid-containing glycoprotein in the jelly coat of sea urchin eggs. Occurrence of a novel type of polysialic acid structure. J Biol Chem. 1994 Sep 9;269(36):22712–22718. [PubMed] [Google Scholar]
  16. Knirel Y. A., Kocharova N. A., Shashkov A. S., Kochetkov N. K., Mamontova V. A., Solovéva T. F. Structure of the capsular polysaccharide of Klebsiella ozaenae serotype K4 containing 3-deoxy-D-glycero-D-galacto-nonulosonic acid. Carbohydr Res. 1989 Jun 1;188:145–155. doi: 10.1016/0008-6215(89)84067-4. [DOI] [PubMed] [Google Scholar]
  17. Lackie P. M., Zuber C., Roth J. Polysialic acid of the neural cell adhesion molecule (N-CAM) is widely expressed during organogenesis in mesodermal and endodermal derivatives. Differentiation. 1994 Aug;57(2):119–131. doi: 10.1046/j.1432-0436.1994.5720119.x. [DOI] [PubMed] [Google Scholar]
  18. Landmesser L., Dahm L., Tang J. C., Rutishauser U. Polysialic acid as a regulator of intramuscular nerve branching during embryonic development. Neuron. 1990 May;4(5):655–667. doi: 10.1016/0896-6273(90)90193-j. [DOI] [PubMed] [Google Scholar]
  19. Livingston B. D., De Robertis E. M., Paulson J. C. Expression of beta-galactoside alpha 2,6 sialyltransferase blocks synthesis of polysialic acid in Xenopus embryos. Glycobiology. 1990 Sep;1(1):39–44. doi: 10.1093/glycob/1.1.39. [DOI] [PubMed] [Google Scholar]
  20. Lüthl A., Laurent J. P., Figurov A., Muller D., Schachner M. Hippocampal long-term potentiation and neural cell adhesion molecules L1 and NCAM. Nature. 1994 Dec 22;372(6508):777–779. doi: 10.1038/372777a0. [DOI] [PubMed] [Google Scholar]
  21. McCoy R. D., Vimr E. R., Troy F. A. CMP-NeuNAc:poly-alpha-2,8-sialosyl sialyltransferase and the biosynthesis of polysialosyl units in neural cell adhesion molecules. J Biol Chem. 1985 Oct 15;260(23):12695–12699. [PubMed] [Google Scholar]
  22. Nadano D., Iwasaki M., Endo S., Kitajima K., Inoue S., Inoue Y. A naturally occurring deaminated neuraminic acid, 3-deoxy-D-glycero-D-galacto-nonulosonic acid (KDN). Its unique occurrence at the nonreducing ends of oligosialyl chains in polysialoglycoprotein of rainbow trout eggs. J Biol Chem. 1986 Sep 5;261(25):11550–11557. [PubMed] [Google Scholar]
  23. Nomoto H., Iwasaki M., Endo T., Inoue S., Inoue Y., Matsumura G. Structures of carbohydrate units isolated from trout egg polysialoglycoproteins: short-cored units with oligosialosyl groups. Arch Biochem Biophys. 1982 Oct 1;218(1):335–341. doi: 10.1016/0003-9861(82)90352-6. [DOI] [PubMed] [Google Scholar]
  24. Nudelman E. D., Mandel U., Levery S. B., Kaizu T., Hakomori S. A series of disialogangliosides with binary 2----3 sialosyllactosamine structure, defined by monoclonal antibody NUH2, are oncodevelopmentally regulated antigens. J Biol Chem. 1989 Nov 5;264(31):18719–18725. [PubMed] [Google Scholar]
  25. Phillips M. L., Nudelman E., Gaeta F. C., Perez M., Singhal A. K., Hakomori S., Paulson J. C. ELAM-1 mediates cell adhesion by recognition of a carbohydrate ligand, sialyl-Lex. Science. 1990 Nov 23;250(4984):1130–1132. doi: 10.1126/science.1701274. [DOI] [PubMed] [Google Scholar]
  26. Roth J. Cellular sialoglycoconjugates: a histochemical perspective. Histochem J. 1993 Oct;25(10):687–710. doi: 10.1007/BF00211765. [DOI] [PubMed] [Google Scholar]
  27. Roth J., Kempf A., Reuter G., Schauer R., Gehring W. J. Occurrence of sialic acids in Drosophila melanogaster. Science. 1992 May 1;256(5057):673–675. doi: 10.1126/science.1585182. [DOI] [PubMed] [Google Scholar]
  28. Roth J., Saremaslani P., Zuber C. Versatility of anti-horseradish peroxidase antibody-gold complexes for cytochemistry and in situ hybridization: preparation and application of soluble complexes with streptavidin-peroxidase conjugates and biotinylated antibodies. Histochemistry. 1992 Nov;98(4):229–236. doi: 10.1007/BF00271036. [DOI] [PubMed] [Google Scholar]
  29. Roth J., Taatjes D. J., Bitter-Suermann D., Finne J. Polysialic acid units are spatially and temporally expressed in developing postnatal rat kidney. Proc Natl Acad Sci U S A. 1987 Apr;84(7):1969–1973. doi: 10.1073/pnas.84.7.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Roth J., Zuber C., Wagner P., Taatjes D. J., Weisgerber C., Heitz P. U., Goridis C., Bitter-Suermann D. Reexpression of poly(sialic acid) units of the neural cell adhesion molecule in Wilms tumor. Proc Natl Acad Sci U S A. 1988 May;85(9):2999–3003. doi: 10.1073/pnas.85.9.2999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Sariola H., Aufderheide E., Bernhard H., Henke-Fahle S., Dippold W., Ekblom P. Antibodies to cell surface ganglioside GD3 perturb inductive epithelial-mesenchymal interactions. Cell. 1988 Jul 15;54(2):235–245. doi: 10.1016/0092-8674(88)90556-9. [DOI] [PubMed] [Google Scholar]
  32. Sato C., Kitajima K., Inoue S., Seki T., Troy F. A., 2nd, Inoue Y. Characterization of the antigenic specificity of four different anti-(alpha 2-->8-linked polysialic acid) antibodies using lipid-conjugated oligo/polysialic acids. J Biol Chem. 1995 Aug 11;270(32):18923–18928. doi: 10.1074/jbc.270.32.18923. [DOI] [PubMed] [Google Scholar]
  33. Sato C., Kitajima K., Tazawa I., Inoue Y., Inoue S., Troy F. A., 2nd Structural diversity in the alpha 2-->8-linked polysialic acid chains in salmonid fish egg glycoproteins. Occurrence of poly(Neu5Ac), poly(Neu5Gc), poly(Neu5Ac, Neu5Gc), poly(KDN), and their partially acetylated forms. J Biol Chem. 1993 Nov 5;268(31):23675–23684. [PubMed] [Google Scholar]
  34. Scheidegger E. P., Lackie P. M., Papay J., Roth J. In vitro and in vivo growth of clonal sublines of human small cell lung carcinoma is modulated by polysialic acid of the neural cell adhesion molecule. Lab Invest. 1994 Jan;70(1):95–106. [PubMed] [Google Scholar]
  35. Shimoda Y., Kitajima K., Inoue S., Inoue Y. Calcium ion binding of three different types of oligo/polysialic acids as studied by equilibrium dialysis and circular dichroic methods. Biochemistry. 1994 Feb 8;33(5):1202–1208. doi: 10.1021/bi00171a020. [DOI] [PubMed] [Google Scholar]
  36. Strecker G., Wieruszeski J. M., Michalski J. C., Alonso C., Boilly B., Montreuil J. Characterization of Le(x), Le(y) and A Le(y) antigen determinants in KDN-containing O-linked glycan chains from Pleurodeles waltlii jelly coat eggs. FEBS Lett. 1992 Feb 17;298(1):39–43. doi: 10.1016/0014-5793(92)80018-c. [DOI] [PubMed] [Google Scholar]
  37. Strecker G., Wieruszeski J. M., Michalski J. C., Alonso C., Leroy Y., Boilly B., Montreuil J. Primary structure of neutral and acidic oligosaccharide-alditols derived from the jelly coat of the Mexican axolotl. Occurrence of oligosaccharides with fucosyl(alpha 1-3)fucosyl(alpha 1-4)-3-deoxy-D-glycero-D-galacto-nonulosonic acid and galactosyl(alpha 1-4)[fucosyl(alpha 1-2)]galactosyl(beta 1-4)-N-acetylglucosamine sequences. Eur J Biochem. 1992 Aug 1;207(3):995–1002. doi: 10.1111/j.1432-1033.1992.tb17135.x. [DOI] [PubMed] [Google Scholar]
  38. Tomasiewicz H., Ono K., Yee D., Thompson C., Goridis C., Rutishauser U., Magnuson T. Genetic deletion of a neural cell adhesion molecule variant (N-CAM-180) produces distinct defects in the central nervous system. Neuron. 1993 Dec;11(6):1163–1174. doi: 10.1016/0896-6273(93)90228-j. [DOI] [PubMed] [Google Scholar]
  39. Towbin H., Staehelin T., Gordon J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci U S A. 1979 Sep;76(9):4350–4354. doi: 10.1073/pnas.76.9.4350. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Troy F. A., 2nd Polysialylation: from bacteria to brains. Glycobiology. 1992 Feb;2(1):5–23. doi: 10.1093/glycob/2.1.5. [DOI] [PubMed] [Google Scholar]
  41. Varki A. Diversity in the sialic acids. Glycobiology. 1992 Feb;2(1):25–40. doi: 10.1093/glycob/2.1.25. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Varki A., Hooshmand F., Diaz S., Varki N. M., Hedrick S. M. Developmental abnormalities in transgenic mice expressing a sialic acid-specific 9-O-acetylesterase. Cell. 1991 Apr 5;65(1):65–74. doi: 10.1016/0092-8674(91)90408-q. [DOI] [PubMed] [Google Scholar]
  43. Vimr E. R., McCoy R. D., Vollger H. F., Wilkison N. C., Troy F. A. Use of prokaryotic-derived probes to identify poly(sialic acid) in neonatal neuronal membranes. Proc Natl Acad Sci U S A. 1984 Apr;81(7):1971–1975. doi: 10.1073/pnas.81.7.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Zuber C., Lackie P. M., Catterall W. A., Roth J. Polysialic acid is associated with sodium channels and the neural cell adhesion molecule N-CAM in adult rat brain. J Biol Chem. 1992 May 15;267(14):9965–9971. [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES