Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1985 Jan;82(2):548–551. doi: 10.1073/pnas.82.2.548

Oxidative stress and protective mechanisms in erythrocytes in relation to Plasmodium vinckei load.

R Stocker, N H Hunt, G D Buffinton, M J Weidemann, P H Lewis-Hughes, I A Clark
PMCID: PMC397077  PMID: 3855565

Abstract

The protection of mouse erythrocytes (RBC) parasitized with Plasmodium vinckei vinckei against activated oxygen species was examined in relation to the intraerythrocytic parasite load. RBC from highly infected animals were separated by density gradient centrifugation into six bands with increasing parasite content and with parasitemias ranging from 17% to 100%. Increase in parasite load was accompanied by a decrease in the activities of the enzymes superoxide dismutase (EC 1.15.1.1), catalase (EC 1.11.1.6), glutathione peroxidase (EC 1.11.1.9), glutathione reductase [NAD(P)H] (EC 1.6.4.2), and NADH-methemoglobin reductase (EC 1.6.2.2; NADH:ferricytochrome b5 oxidoreductase) in the RBC lysates. In contrast, the total amount of reduced glutathione increased in the highly parasitized bands. Furthermore, the vitamin E content of all RBC bands, including the one that contained mainly nonparasitized erythrocytes, was 3- to 5-fold higher than that of control noninfected RBC. Increasing parasite load was accompanied by an increase in the production of malonyldialdehyde, indicating enhanced lipid peroxidation. Our results indicate that oxidative stress is experienced by all RBC during a malarial infection and is accompanied by a variety of changes in the antioxidant defense mechanisms of the host and the parasite. Furthermore, it appears that the plasma membrane of the host cell is better protected against oxidative injury than are the membranes surrounding the parasite.

Full text

PDF
548

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Babior B. M. Oxygen-dependent microbial killing by phagocytes (first of two parts). N Engl J Med. 1978 Mar 23;298(12):659–668. doi: 10.1056/NEJM197803232981205. [DOI] [PubMed] [Google Scholar]
  2. Badwey J. A., Karnovsky M. L. Active oxygen species and the functions of phagocytic leukocytes. Annu Rev Biochem. 1980;49:695–726. doi: 10.1146/annurev.bi.49.070180.003403. [DOI] [PubMed] [Google Scholar]
  3. Burton G. W., Joyce A., Ingold K. U. Is vitamin E the only lipid-soluble, chain-breaking antioxidant in human blood plasma and erythrocyte membranes? Arch Biochem Biophys. 1983 Feb 15;221(1):281–290. doi: 10.1016/0003-9861(83)90145-5. [DOI] [PubMed] [Google Scholar]
  4. COHEN G., HOCHSTEIN P. GLUTATHIONE PEROXIDASE: THE PRIMARY AGENT FOR THE ELIMINATION OF HYDROGEN PEROXIDE IN ERYTHROCYTES. Biochemistry. 1963 Nov-Dec;2:1420–1428. doi: 10.1021/bi00906a038. [DOI] [PubMed] [Google Scholar]
  5. Celada A., Cruchaud A., Perrin L. H. Phagocytosis of Plasmodium falciparum-parasitized erythrocytes by human polymorphonuclear leukocytes. J Parasitol. 1983 Feb;69(1):49–53. [PubMed] [Google Scholar]
  6. Clark I. A., Cowden W. B., Butcher G. A. Free oxygen radical generators as antimalarial drugs. Lancet. 1983 Jan 29;1(8318):234–234. doi: 10.1016/s0140-6736(83)92603-x. [DOI] [PubMed] [Google Scholar]
  7. Clark I. A., Cowden W. B., Hunt N. H., Maxwell L. E., Mackie E. J. Activity of divicine in Plasmodium vinckei-infected mice has implications for treatment of favism and epidemiology of G-6-PD deficiency. Br J Haematol. 1984 Jul;57(3):479–487. doi: 10.1111/j.1365-2141.1984.tb02922.x. [DOI] [PubMed] [Google Scholar]
  8. Clark I. A., Hunt N. H. Evidence for reactive oxygen intermediates causing hemolysis and parasite death in malaria. Infect Immun. 1983 Jan;39(1):1–6. doi: 10.1128/iai.39.1.1-6.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Clark I. A. Suggested importance of monokines in pathophysiology of endotoxin shock and malaria. Klin Wochenschr. 1982 Jul 15;60(14):756–758. doi: 10.1007/BF01716573. [DOI] [PubMed] [Google Scholar]
  10. Dockrell H. M., Playfair J. H. Killing of blood-stage murine malaria parasites by hydrogen peroxide. Infect Immun. 1983 Jan;39(1):456–459. doi: 10.1128/iai.39.1.456-459.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Eaton J. W., Eckman J. R., Berger E., Jacob H. S. Suppression of malaria infection by oxidant-sensitive host erythrocytes. Nature. 1976 Dec 23;264(5588):758–760. doi: 10.1038/264758a0. [DOI] [PubMed] [Google Scholar]
  12. Eckman J. R., Eaton J. W. Dependence of plasmodial glutathione metabolism on the host cell. Nature. 1979 Apr 19;278(5706):754–756. doi: 10.1038/278754a0. [DOI] [PubMed] [Google Scholar]
  13. Elsayed N. M., Mustafa M. G. Dietary antioxidants and the biochemical response to oxidant inhalation. I. Influence of dietary vitamin E on the biochemical effects of nitrogen dioxide exposure in rat lung. Toxicol Appl Pharmacol. 1982 Dec;66(3):319–328. doi: 10.1016/0041-008x(82)90298-8. [DOI] [PubMed] [Google Scholar]
  14. Friedman M. J. Oxidant damage mediates variant red cell resistance to malaria. Nature. 1979 Jul 19;280(5719):245–247. doi: 10.1038/280245a0. [DOI] [PubMed] [Google Scholar]
  15. Halliwell B. The biological effects of the superoxide radical and its products. Bull Eur Physiopathol Respir. 1981;17 (Suppl):21–29. [PubMed] [Google Scholar]
  16. Khusmith S., Druilhe P., Gentilini M. Enhanced Plasmodium falciparum merozoite phagocytosis by monocytes from immune individuals. Infect Immun. 1982 Mar;35(3):874–879. doi: 10.1128/iai.35.3.874-879.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Kimball R. E., Reddy K., Peirce T. H., Schwartz L. W., Mustafa M. G., Cross C. E. Oxygen toxicity: augmentation of antioxidant defense mechanisms in rat lung. Am J Physiol. 1976 May;230(5):1425–1431. doi: 10.1152/ajplegacy.1976.230.5.1425. [DOI] [PubMed] [Google Scholar]
  18. Ockenhouse C. F., Shear H. L. Oxidative killing of the intraerythrocytic malaria parasite Plasmodium yoelii by activated macrophages. J Immunol. 1984 Jan;132(1):424–431. [PubMed] [Google Scholar]
  19. Picard-Maureau A., Hempelmann E., Krämmer G., Jackisch R., Jung A. Glutathionstatus in Plasmodium vinckei parasitierten Erythrozyten in Abhängigkeit vom intraerythrozytären Entwicklungsstadium des Parasiten. Tropenmed Parasitol. 1975 Dec;26(4):405–416. [PubMed] [Google Scholar]
  20. Roth E. F., Jr, Raventos-Suarez C., Perkins M., Nagel R. L. Glutathione stability and oxidative stress in P. falciparum infection in vitro: responses of normal and G6PD deficient cells. Biochem Biophys Res Commun. 1982 Nov 30;109(2):355–362. doi: 10.1016/0006-291x(82)91728-4. [DOI] [PubMed] [Google Scholar]
  21. Sevanian A., Hacker A. D., Elsayed N. Influence of vitamin E and nitrogen dioxide on lipid peroxidation in rat lung and liver microsomes. Lipids. 1982 Apr;17(4):269–277. doi: 10.1007/BF02534941. [DOI] [PubMed] [Google Scholar]
  22. Shear H. L., Nussenzweig R. S., Bianco C. Immune phagocytosis in murine malaria. J Exp Med. 1979 Jun 1;149(6):1288–1298. doi: 10.1084/jem.149.6.1288. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Stocks J., Offerman E. L., Modell C. B., Dormandy T. L. The susceptibility to autoxidation of human red cell lipids in health and disease. Br J Haematol. 1972 Dec;23(6):713–724. doi: 10.1111/j.1365-2141.1972.tb03486.x. [DOI] [PubMed] [Google Scholar]
  24. Taylor S. L., Lamden M. P., Tappel A. L. Sensitive fluorometric method for tissue tocopherol analysis. Lipids. 1976 Jul;11(7):530–538. doi: 10.1007/BF02532898. [DOI] [PubMed] [Google Scholar]
  25. Trubowitz S., Masek B. Plasmodium falciparum: phagocytosis by polymorphonuclear leukocytes. Science. 1968 Oct 11;162(3850):273–274. doi: 10.1126/science.162.3850.273. [DOI] [PubMed] [Google Scholar]
  26. Vernes A. Phagocytosis of P falciparum parasitised erythrocytes by peripheral monocytes. Lancet. 1980 Dec 13;2(8207):1297–1298. doi: 10.1016/s0140-6736(80)92357-0. [DOI] [PubMed] [Google Scholar]
  27. Walter R. D., Nordmeyer J. P., Königk E. NADP-specific glutamate dehydrogenase from Plasmodium chabaudi. Hoppe Seylers Z Physiol Chem. 1974 May;355(5):495–500. doi: 10.1515/bchm2.1974.355.1.495. [DOI] [PubMed] [Google Scholar]
  28. Yamada K. A., Sherman I. W. Plasmodium lophurae: composition and properties of hemozoin, the malarial pigment. Exp Parasitol. 1979 Aug;48(1):61–74. doi: 10.1016/0014-4894(79)90055-9. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES