Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1985 Feb;82(4):1099–1103. doi: 10.1073/pnas.82.4.1099

23Na and 39K NMR studies of ion transport in human erythrocytes.

T Ogino, G I Shulman, M J Avison, S R Gullans, J A den Hollander, R G Shulman
PMCID: PMC397201  PMID: 2579385

Abstract

Ion transport in human erythrocytes was studied by 23Na and 39K NMR with an anionic paramagnetic shift reagent, Dy(P3O10)2(7-). The intra- and extracellular 23Na and 39K NMR signals were well separated (over 10 ppm) at 5 mM concentration of the shift reagent. The NMR visibility of the intracellular Na+ and K+ was determined to be 100% in human and duck erythrocytes. The intracellular ion concentrations were 8.1 +/- 0.8 mM Na+ (n = 7) and 110 +/- 12 mM K+ (n = 4) for fresh human erythrocytes. The ouabain-sensitive net Na+ efflux was 1.75 +/- 0.08 mmol/hr per liter of cells at 37 degrees C (n = 3). The gramicidin-induced ion transport in human erythrocytes was also studied by 23Na and 39K NMR or by simultaneous measurements of 23Na NMR and a K+-selective electrode. The time courses of the Na+ and K+ transport induced by the ionophore were biphasic. The initial rapid fluxes were due to an exchange of Na+ for K+, which were found to occur with a 1:1 stoichiometry. The subsequent slow components were the net Na+ and K+ effluxes rate-limited by the Cl- permeability and accompanied by a reduction in cell volume. The Cl- permeability determined from the NMR measurements of these slow fluxes was 3.2 +/- 0.5 X 10(-8) cm/sec at 25 degrees C (n = 4).

Full text

PDF
1099

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Brophy P. J., Hayer M. K., Riddell F. G. Measurement of intracellular potassium ion concentrations by n.m.r. Biochem J. 1983 Mar 15;210(3):961–963. doi: 10.1042/bj2100961. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Civan M. M., Degani H., Margalit Y., Shporer M. Observations of 23Na in frog skin by NMR. Am J Physiol. 1983 Sep;245(3):C213–C219. doi: 10.1152/ajpcell.1983.245.3.C213. [DOI] [PubMed] [Google Scholar]
  3. Fabry M. E., San George R. C. Effect of magnetic susceptibility on nuclear magnetic resonance signals arising from red cells: a warning. Biochemistry. 1983 Aug 16;22(17):4119–4125. doi: 10.1021/bi00286a020. [DOI] [PubMed] [Google Scholar]
  4. Funder J., Wieth J. O. Potassium, sodium, and water in normal human red blood cells. Scand J Clin Lab Invest. 1966;18(2):167–180. doi: 10.3109/00365516609051812. [DOI] [PubMed] [Google Scholar]
  5. GLYNN I. M. The action of cardiac glycosides on sodium and potassium movements in human red cells. J Physiol. 1957 Apr 3;136(1):148–173. doi: 10.1113/jphysiol.1957.sp005749. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Garay R. P., Dagher G., Pernollet M. G., Devynck M. A., Meyer P. Inherited defect in a Na+, K-co-transport system in erythrocytes from essential hypertensive patients. Nature. 1980 Mar 20;284(5753):281–283. doi: 10.1038/284281a0. [DOI] [PubMed] [Google Scholar]
  7. Gupta R. K., Gupta P., Moore R. D. NMR studies of intracellular metal ions in intact cells and tissues. Annu Rev Biophys Bioeng. 1984;13:221–246. doi: 10.1146/annurev.bb.13.060184.001253. [DOI] [PubMed] [Google Scholar]
  8. Harris E. J., Pressman B. C. Obligate cation exchanges in red cells. Nature. 1967 Dec 2;216(5118):918–920. doi: 10.1038/216918a0. [DOI] [PubMed] [Google Scholar]
  9. Hull K. L., Jr, Roses A. D. Stoichiometry of sodium and potassium transport in erythrocytes from patients with myotonic muscular dystrophy. J Physiol. 1976 Jan;254(1):169–181. doi: 10.1113/jphysiol.1976.sp011227. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Hunter M. J. Human erythrocyte anion permeabilities measured under conditions of net charge transfer. J Physiol. 1977 Jun;268(1):35–49. doi: 10.1113/jphysiol.1977.sp011845. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Knauf P. A., Law F. Y., Marchant P. J. Relationship of net chloride flow across the human erythrocyte membrane to the anion exchange mechanism. J Gen Physiol. 1983 Jan;81(1):95–126. doi: 10.1085/jgp.81.1.95. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Naylor G. J., Reid A. H., Dick D. A., Dick E. G. A biochemical study of short-cycle manic-depressive psychosis in mental defectives. Br J Psychiatry. 1976 Feb;128:169–180. doi: 10.1192/bjp.128.2.169. [DOI] [PubMed] [Google Scholar]
  13. Ogino T., den Hollander J. A., Shulman R. G. 39K, 23Na, and 31P NMR studies of ion transport in Saccharomyces cerevisiae. Proc Natl Acad Sci U S A. 1983 Sep;80(17):5185–5189. doi: 10.1073/pnas.80.17.5185. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Pike M. M., Fossel E. T., Smith T. W., Springer C. S., Jr High-resolution 23Na-NMR studies of human erythrocytes: use of aqueous shift reagents. Am J Physiol. 1984 May;246(5 Pt 1):C528–C536. doi: 10.1152/ajpcell.1984.246.5.C528. [DOI] [PubMed] [Google Scholar]
  15. Pike M. M., Simon S. R., Balschi J. A., Springer C. S., Jr High-resolution NMR studies of transmembrane cation transport: use of an aqueous shift reagent for 23Na. Proc Natl Acad Sci U S A. 1982 Feb;79(3):810–814. doi: 10.1073/pnas.79.3.810. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Rubython E. J., Cumberbatch M., Morgan D. B. Changes in the number and activity of sodium pumps in erythrocytes from patients with hyperthyroidism. Clin Sci (Lond) 1983 Apr;64(4):441–447. doi: 10.1042/cs0640441. [DOI] [PubMed] [Google Scholar]
  17. Tsuda S., Tomoda A., Minakami S. Intracellular pH (pHi) of red cells stored in acid citrate dextrose medium. Effects of temperature and citrate anions. J Biochem. 1975 Sep;78(3):469–474. doi: 10.1093/oxfordjournals.jbchem.a130929. [DOI] [PubMed] [Google Scholar]
  18. Yeh H. J., Brinley F. J., Jr, Becker E. D. Nuclear magnetic resonance studies on intracellular sodium in human erythrocytes and frog muscle. Biophys J. 1973 Jan;13(1):56–71. doi: 10.1016/S0006-3495(73)85969-7. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES