Abstract
Ion transport in human erythrocytes was studied by 23Na and 39K NMR with an anionic paramagnetic shift reagent, Dy(P3O10)2(7-). The intra- and extracellular 23Na and 39K NMR signals were well separated (over 10 ppm) at 5 mM concentration of the shift reagent. The NMR visibility of the intracellular Na+ and K+ was determined to be 100% in human and duck erythrocytes. The intracellular ion concentrations were 8.1 +/- 0.8 mM Na+ (n = 7) and 110 +/- 12 mM K+ (n = 4) for fresh human erythrocytes. The ouabain-sensitive net Na+ efflux was 1.75 +/- 0.08 mmol/hr per liter of cells at 37 degrees C (n = 3). The gramicidin-induced ion transport in human erythrocytes was also studied by 23Na and 39K NMR or by simultaneous measurements of 23Na NMR and a K+-selective electrode. The time courses of the Na+ and K+ transport induced by the ionophore were biphasic. The initial rapid fluxes were due to an exchange of Na+ for K+, which were found to occur with a 1:1 stoichiometry. The subsequent slow components were the net Na+ and K+ effluxes rate-limited by the Cl- permeability and accompanied by a reduction in cell volume. The Cl- permeability determined from the NMR measurements of these slow fluxes was 3.2 +/- 0.5 X 10(-8) cm/sec at 25 degrees C (n = 4).
Full text
PDF




Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Brophy P. J., Hayer M. K., Riddell F. G. Measurement of intracellular potassium ion concentrations by n.m.r. Biochem J. 1983 Mar 15;210(3):961–963. doi: 10.1042/bj2100961. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Civan M. M., Degani H., Margalit Y., Shporer M. Observations of 23Na in frog skin by NMR. Am J Physiol. 1983 Sep;245(3):C213–C219. doi: 10.1152/ajpcell.1983.245.3.C213. [DOI] [PubMed] [Google Scholar]
- Fabry M. E., San George R. C. Effect of magnetic susceptibility on nuclear magnetic resonance signals arising from red cells: a warning. Biochemistry. 1983 Aug 16;22(17):4119–4125. doi: 10.1021/bi00286a020. [DOI] [PubMed] [Google Scholar]
- Funder J., Wieth J. O. Potassium, sodium, and water in normal human red blood cells. Scand J Clin Lab Invest. 1966;18(2):167–180. doi: 10.3109/00365516609051812. [DOI] [PubMed] [Google Scholar]
- GLYNN I. M. The action of cardiac glycosides on sodium and potassium movements in human red cells. J Physiol. 1957 Apr 3;136(1):148–173. doi: 10.1113/jphysiol.1957.sp005749. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Garay R. P., Dagher G., Pernollet M. G., Devynck M. A., Meyer P. Inherited defect in a Na+, K-co-transport system in erythrocytes from essential hypertensive patients. Nature. 1980 Mar 20;284(5753):281–283. doi: 10.1038/284281a0. [DOI] [PubMed] [Google Scholar]
- Gupta R. K., Gupta P., Moore R. D. NMR studies of intracellular metal ions in intact cells and tissues. Annu Rev Biophys Bioeng. 1984;13:221–246. doi: 10.1146/annurev.bb.13.060184.001253. [DOI] [PubMed] [Google Scholar]
- Harris E. J., Pressman B. C. Obligate cation exchanges in red cells. Nature. 1967 Dec 2;216(5118):918–920. doi: 10.1038/216918a0. [DOI] [PubMed] [Google Scholar]
- Hull K. L., Jr, Roses A. D. Stoichiometry of sodium and potassium transport in erythrocytes from patients with myotonic muscular dystrophy. J Physiol. 1976 Jan;254(1):169–181. doi: 10.1113/jphysiol.1976.sp011227. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hunter M. J. Human erythrocyte anion permeabilities measured under conditions of net charge transfer. J Physiol. 1977 Jun;268(1):35–49. doi: 10.1113/jphysiol.1977.sp011845. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Knauf P. A., Law F. Y., Marchant P. J. Relationship of net chloride flow across the human erythrocyte membrane to the anion exchange mechanism. J Gen Physiol. 1983 Jan;81(1):95–126. doi: 10.1085/jgp.81.1.95. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Naylor G. J., Reid A. H., Dick D. A., Dick E. G. A biochemical study of short-cycle manic-depressive psychosis in mental defectives. Br J Psychiatry. 1976 Feb;128:169–180. doi: 10.1192/bjp.128.2.169. [DOI] [PubMed] [Google Scholar]
- Ogino T., den Hollander J. A., Shulman R. G. 39K, 23Na, and 31P NMR studies of ion transport in Saccharomyces cerevisiae. Proc Natl Acad Sci U S A. 1983 Sep;80(17):5185–5189. doi: 10.1073/pnas.80.17.5185. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pike M. M., Fossel E. T., Smith T. W., Springer C. S., Jr High-resolution 23Na-NMR studies of human erythrocytes: use of aqueous shift reagents. Am J Physiol. 1984 May;246(5 Pt 1):C528–C536. doi: 10.1152/ajpcell.1984.246.5.C528. [DOI] [PubMed] [Google Scholar]
- Pike M. M., Simon S. R., Balschi J. A., Springer C. S., Jr High-resolution NMR studies of transmembrane cation transport: use of an aqueous shift reagent for 23Na. Proc Natl Acad Sci U S A. 1982 Feb;79(3):810–814. doi: 10.1073/pnas.79.3.810. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rubython E. J., Cumberbatch M., Morgan D. B. Changes in the number and activity of sodium pumps in erythrocytes from patients with hyperthyroidism. Clin Sci (Lond) 1983 Apr;64(4):441–447. doi: 10.1042/cs0640441. [DOI] [PubMed] [Google Scholar]
- Tsuda S., Tomoda A., Minakami S. Intracellular pH (pHi) of red cells stored in acid citrate dextrose medium. Effects of temperature and citrate anions. J Biochem. 1975 Sep;78(3):469–474. doi: 10.1093/oxfordjournals.jbchem.a130929. [DOI] [PubMed] [Google Scholar]
- Yeh H. J., Brinley F. J., Jr, Becker E. D. Nuclear magnetic resonance studies on intracellular sodium in human erythrocytes and frog muscle. Biophys J. 1973 Jan;13(1):56–71. doi: 10.1016/S0006-3495(73)85969-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
