Abstract
Isolated frog retinas were incubated with radiolabeled glycoprotein precursors in the presence or absence of tunicamycin (TM), a selective inhibitor of protein N-glycosylation. In dual-label incubations, TM inhibited the incorporation of [3H]mannose into total retina Cl3CCOOH-precipitable material by 85% relative to controls, whereas incorporation of [14C]leucine was not significantly affected. In a companion single-label incubation, TM blocked the incorporation of [3H]leucine into rod outer segment (ROS) membrane Cl3CCOOH-precipitable material by 95% relative to controls. When retinas were labeled with [35S]methionine, fluorograms of NaDodSO4/polyacrylamide gels from control retinas and ROS membranes exhibited a heavily labeled component (apparent Mr approximately 37,000) which had the electrophoretic and antigenic properties of opsin, the rod visual pigment apoglycoprotein. TM-treated retinas exhibited a substantially reduced labeling of the Mr 37,000 component and incorporation of label into a component (apparent Mr approximately 32,000) not found in control retinas, which exhibited the electrophoretic and antigenic behavior of nonglycosylated opsin. ROS membranes isolated from TM-treated retinas contained neither the Mr 37,000 nor the Mr 32,000 radiolabeled species. Light-microscope autoradiograms of retinas incubated with [3H]leucine in the absence of TM exhibited bands of silver grains at the base of ROS, indicative of new membrane assembly. However, no such bands were observed in autoradiograms of TM-treated retinas. These results suggest that glycosylation of opsin is required for its incorporation into ROS membranes.
Full text
PDF




Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Abrahamson E. W., Fager R. S., Mason W. T. Comparative properties of vertebrate and invertebrate photoreceptors. Exp Eye Res. 1974 Jan;18(1):51–67. doi: 10.1016/0014-4835(74)90043-8. [DOI] [PubMed] [Google Scholar]
- Basinger S. F., Hoffman R. T. Rhodopsin biosynthesis in isolated retinas. Methods Enzymol. 1982;81:772–782. doi: 10.1016/s0076-6879(82)81103-8. [DOI] [PubMed] [Google Scholar]
- Bok D., Young R. W. The renewal of diffusely distributed protein in the outer segments of rods and cones. Vision Res. 1972 Feb;12(2):161–168. doi: 10.1016/0042-6989(72)90108-3. [DOI] [PubMed] [Google Scholar]
- Chua N. H., Blomberg F. Immunochemical studies of thylakoid membrane polypeptides from spinach and Chlamydomonas reinhardtii. A modified procedure for crossed immunoelectrophoresis of dodecyl sulfate.protein complexes. J Biol Chem. 1979 Jan 10;254(1):215–223. [PubMed] [Google Scholar]
- Converse C. A., Papermaster D. S. Membrane protein analysis by two-dimensional immunoelectrophoresis. Science. 1975 Aug 8;189(4201):469–472. doi: 10.1126/science.1154021. [DOI] [PubMed] [Google Scholar]
- Fliesler S. J., Anderson R. E. Chemistry and metabolism of lipids in the vertebrate retina. Prog Lipid Res. 1983;22(2):79–131. doi: 10.1016/0163-7827(83)90004-8. [DOI] [PubMed] [Google Scholar]
- Fliesler S. J., Rapp L. M., Hollyfield J. G. Photoreceptor-specific degeneration caused by tunicamycin. Nature. 1984 Oct 11;311(5986):575–577. doi: 10.1038/311575a0. [DOI] [PubMed] [Google Scholar]
- Fliesler S. J., Tabor G. A., Hollyfield J. G. Glycoprotein synthesis in the human retina: localization of the lipid intermediate pathway. Exp Eye Res. 1984 Aug;39(2):153–173. doi: 10.1016/0014-4835(84)90005-8. [DOI] [PubMed] [Google Scholar]
- Fukuda M. N., Papermaster D. S., Hargrave P. A. Rhodopsin carbohydrate. Structure of small oligosaccharides attached at two sites near the NH2 terminus. J Biol Chem. 1979 Sep 10;254(17):8201–8207. [PubMed] [Google Scholar]
- Goldman B. M., Blobel G. In vitro biosynthesis, core glycosylation, and membrane integration of opsin. J Cell Biol. 1981 Jul;90(1):236–242. doi: 10.1083/jcb.90.1.236. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hargrave P. A. The amino-terminal tryptic peptide of bovine rhodopsin. A glycopeptide containing two sites of oligosaccharide attachment. Biochim Biophys Acta. 1977 May 27;492(1):83–94. doi: 10.1016/0005-2795(77)90216-1. [DOI] [PubMed] [Google Scholar]
- Heath A. R., Basinger S. F. Simple sugars inhibit rod outer segment disc shedding by the frog retina. Vision Res. 1983;23(12):1371–1377. doi: 10.1016/0042-6989(83)90148-7. [DOI] [PubMed] [Google Scholar]
- Heller J. Comparative study of a membrane protein. Characterization of bovine, rat, and frog visual pigments500. Biochemistry. 1969 Feb;8(2):675–679. doi: 10.1021/bi00830a032. [DOI] [PubMed] [Google Scholar]
- Heller J., Lawrence M. A. Structure of the glycopeptide from bovine visual pigment 500. Biochemistry. 1970 Feb 17;9(4):864–869. doi: 10.1021/bi00806a021. [DOI] [PubMed] [Google Scholar]
- Heller J. Structure of visual pigments. I. Purification, molecular weight, and composition of bovine visual pigment500. Biochemistry. 1968 Aug;7(8):2906–2913. doi: 10.1021/bi00848a030. [DOI] [PubMed] [Google Scholar]
- Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
- Liang C. J., Yamashita K., Muellenberg C. G., Shichi H., Kobata A. Structure of the carbohydrate moieties of bovine rhodopsin. J Biol Chem. 1979 Jul 25;254(14):6414–6418. [PubMed] [Google Scholar]
- Marshall R. D. Some observations on why many proteins are glycosylated. Biochem Soc Trans. 1979 Aug;7(4):800–805. doi: 10.1042/bst0070800. [DOI] [PubMed] [Google Scholar]
- Matheke M. L., Fliesler S. J., Basinger S. F., Holtzman E. The effects of monensin on transport of membrane components in the frog retinal photoreceptor. I. Light microscopic autoradiography and biochemical analysis. J Neurosci. 1984 Apr;4(4):1086–1092. doi: 10.1523/JNEUROSCI.04-04-01086.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Matheke M. L., Holtzman E. The effects of monensin and of puromycin on transport of membrane components in the frog retinal photoreceptor. II. Electron microscopic autoradiography of proteins and glycerolipids. J Neurosci. 1984 Apr;4(4):1093–1103. doi: 10.1523/JNEUROSCI.04-04-01093.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
- O'Brien P. J. Rhodopsin as a glycoprotein: a possible role for the oligosaccharide in phagocytosis. Exp Eye Res. 1976 Aug;23(2):127–137. doi: 10.1016/0014-4835(76)90196-2. [DOI] [PubMed] [Google Scholar]
- Olden K., Parent J. B., White S. L. Carbohydrate moieties of glycoproteins. A re-evaluation of their function. Biochim Biophys Acta. 1982 May 12;650(4):209–232. doi: 10.1016/0304-4157(82)90017-x. [DOI] [PubMed] [Google Scholar]
- Papermaster D. S., Dreyer W. J. Rhodopsin content in the outer segment membranes of bovine and frog retinal rods. Biochemistry. 1974 May 21;13(11):2438–2444. doi: 10.1021/bi00708a031. [DOI] [PubMed] [Google Scholar]
- Plantner J. J., Kean E. L. Carbohydrate composition of bovine rhodopsin. J Biol Chem. 1976 Mar 25;251(6):1548–1552. [PubMed] [Google Scholar]
- Plantner J. J., Poncz L., Kean E. L. Effect of tunicamycin on the glycosylation of rhodopsin. Arch Biochem Biophys. 1980 May;201(2):527–532. doi: 10.1016/0003-9861(80)90541-x. [DOI] [PubMed] [Google Scholar]
- Schwarz R. T., Datema R. The lipid pathway of protein glycosylation and its inhibitors: the biological significance of protein-bound carbohydrates. Adv Carbohydr Chem Biochem. 1982;40:287–379. doi: 10.1016/s0065-2318(08)60111-0. [DOI] [PubMed] [Google Scholar]
- Udenfriend S., Stein S., Böhlen P., Dairman W., Leimgruber W., Weigele M. Fluorescamine: a reagent for assay of amino acids, peptides, proteins, and primary amines in the picomole range. Science. 1972 Nov 24;178(4063):871–872. doi: 10.1126/science.178.4063.871. [DOI] [PubMed] [Google Scholar]
- Young R. W. Visual cells and the concept of renewal. Invest Ophthalmol Vis Sci. 1976 Sep;15(9):700–725. [PubMed] [Google Scholar]





