Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1985 Feb;82(4):1237–1241. doi: 10.1073/pnas.82.4.1237

Neuroleptic drugs attenuate calcium influx and tension development in rabbit thoracic aorta: effects of pimozide, penfluridol, chlorpromazine, and haloperidol.

S F Flaim, M D Brannan, S C Swigart, M M Gleason, L D Muschek
PMCID: PMC397230  PMID: 2579392

Abstract

This study was designed to determine whether neuroleptic drugs have calcium channel blocking activity in isolated rings of rabbit thoracic aorta. The results confirm previous findings that pimozide and penfluridol are calcium channel blockers. However, the data do not support the conclusion that these agents are selective for the voltage-sensitive calcium channel. The results also show that both haloperidol and chlorpromazine (which represent different classes of neuroleptic drugs) are also calcium channel blockers in vascular smooth muscle.

Full text

PDF
1237

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Asano M., Suzuki Y., Hidaka H. Effects of various calmodulin antagonists on contraction of rabbit aortic strips. J Pharmacol Exp Ther. 1982 Jan;220(1):191–196. [PubMed] [Google Scholar]
  2. Cassidy P., Hoar P. E., Kerrick W. G. Inhibition of Ca2+-activated tension and myosin light chain phosphorylation in skinned smooth muscle strips by the phenothiazines. Pflugers Arch. 1980 Sep;387(2):115–120. doi: 10.1007/BF00584261. [DOI] [PubMed] [Google Scholar]
  3. Gould R. J., Murphy K. M., Reynolds I. J., Snyder S. H. Antischizophrenic drugs of the diphenylbutylpiperidine type act as calcium channel antagonists. Proc Natl Acad Sci U S A. 1983 Aug;80(16):5122–5125. doi: 10.1073/pnas.80.16.5122. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Janis R. A., Scriabine A. Sites of action of Ca2+ channel inhibitors. Biochem Pharmacol. 1983 Dec 1;32(23):3499–3507. doi: 10.1016/0006-2952(83)90295-2. [DOI] [PubMed] [Google Scholar]
  5. Johnson J. D. A calmodulin-like ca receptor in the ca channel. Biophys J. 1984 Jan;45(1):134–136. doi: 10.1016/S0006-3495(84)84138-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Keller C. H., Olwin B. B., LaPorte D. C., Storm D. R. Determination of the free-energy coupling for binding of calcium ions and troponin I to calmodulin. Biochemistry. 1982 Jan 5;21(1):156–162. doi: 10.1021/bi00530a027. [DOI] [PubMed] [Google Scholar]
  7. Meisheri K. D., Hwang O., van Breemen C. Evidence for two separated Ca2+ pathways in smooth muscle plasmalemma. J Membr Biol. 1981 Mar 15;59(1):19–25. doi: 10.1007/BF01870817. [DOI] [PubMed] [Google Scholar]
  8. Meisheri K. D., Palmer R. F., Van Breemen C. The effects of amrinone on contractility, Ca2+ uptake and cAMP in smooth muscle. Eur J Pharmacol. 1980 Jan 25;61(2):159–165. doi: 10.1016/0014-2999(80)90158-2. [DOI] [PubMed] [Google Scholar]
  9. Prozialeck W. C., Weiss B. Inhibition of calmodulin by phenothiazines and related drugs: structure-activity relationships. J Pharmacol Exp Ther. 1982 Sep;222(3):509–516. [PubMed] [Google Scholar]
  10. Ratz P. H., Flaim S. F. Mechanism of 5-HT contraction in isolated bovine ventricular coronary arteries. Evidence for transient receptor-operated calcium influx channels. Circ Res. 1984 Feb;54(2):135–143. doi: 10.1161/01.res.54.2.135. [DOI] [PubMed] [Google Scholar]
  11. Silver P. J., Stull J. T. Effects of the calmodulin antagonist, fluphenazine, on phosphorylation of myosin and phosphorylase in intact smooth muscle. Mol Pharmacol. 1983 May;23(3):665–670. [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES