Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1985 Feb;82(4):1281–1285. doi: 10.1073/pnas.82.4.1281

Axonal transport of a heat shock protein in the rabbit visual system.

B D Clark, I R Brown
PMCID: PMC397239  PMID: 3856259

Abstract

Intraocular injection of [35S]methionine was used to demonstrate the pronounced induction of a 74-kDa heat shock protein in the rabbit retina after a 3 degrees C increase in body temperature was generated by intravenous administration of D-lysergic acid diethylamide. Two-dimensional polyacrylamide gel electrophoresis and fluorography revealed that the induced heat shock protein underwent axonal transport from retinal ganglion cells into the optic nerve and subsequently down the contralateral optic tract to synaptic termini in the visual projection area. Since the heat shock protein took more than 8 days to move down the optic nerve to the superior colliculus, it is transported by slow rather than by fast axonal transport.

Full text

PDF
1281

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ashburner M., Bonner J. J. The induction of gene activity in drosophilia by heat shock. Cell. 1979 Jun;17(2):241–254. doi: 10.1016/0092-8674(79)90150-8. [DOI] [PubMed] [Google Scholar]
  2. Bonner W. M., Laskey R. A. A film detection method for tritium-labelled proteins and nucleic acids in polyacrylamide gels. Eur J Biochem. 1974 Jul 1;46(1):83–88. doi: 10.1111/j.1432-1033.1974.tb03599.x. [DOI] [PubMed] [Google Scholar]
  3. Brady S. T., Lasek R. J. Nerve-specific enolase and creatine phosphokinase in axonal transport: soluble proteins and the axoplasmic matrix. Cell. 1981 Feb;23(2):515–523. doi: 10.1016/0092-8674(81)90147-1. [DOI] [PubMed] [Google Scholar]
  4. Brown I. R. Hyperthermia induces the synthesis of a heat shock protein by polysomes isolated from the fetal and neonatal mammalian brain. J Neurochem. 1983 May;40(5):1490–1493. doi: 10.1111/j.1471-4159.1983.tb13596.x. [DOI] [PubMed] [Google Scholar]
  5. Brown I. R., Rush S. J. Induction of a 'stress' protein in intact mammalian organs after the intravenous administration of sodium arsenite. Biochem Biophys Res Commun. 1984 Apr 16;120(1):150–155. doi: 10.1016/0006-291x(84)91426-8. [DOI] [PubMed] [Google Scholar]
  6. Clark B. D., Brown I. R. Protein synthesis in the mammalian retina following the intravenous administration of LSD. Brain Res. 1982 Sep 9;247(1):97–104. doi: 10.1016/0006-8993(82)91031-9. [DOI] [PubMed] [Google Scholar]
  7. Cosgrove J. W., Brown I. R. Effect of intravenous administration of D-lysergic acid diethylamide on initiation of protein synthesis in a cell-free system derived from brain. J Neurochem. 1984 May;42(5):1420–1426. doi: 10.1111/j.1471-4159.1984.tb02803.x. [DOI] [PubMed] [Google Scholar]
  8. Cosgrove J. W., Brown I. R. Heat shock protein in mammalian brain and other organs after a physiologically relevant increase in body temperature induced by D-lysergic acid diethylamide. Proc Natl Acad Sci U S A. 1983 Jan;80(2):569–573. doi: 10.1073/pnas.80.2.569. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Cosgrove J. W., Clark B. D., Brown I. R. Effect of intravenous administration of d-lysergic acid diethylamide on subsequent protein synthesis in a cell-free system derived from brain. J Neurochem. 1981 Mar;36(3):1037–1045. doi: 10.1111/j.1471-4159.1981.tb01697.x. [DOI] [PubMed] [Google Scholar]
  10. Currie R. W., White F. P. Trauma-induced protein in rat tissues: a physiological role for a "heat shock" protein? Science. 1981 Oct 2;214(4516):72–73. doi: 10.1126/science.7280681. [DOI] [PubMed] [Google Scholar]
  11. Di Giamberardino L. D., Bennett G., Koenig H. L., Droz B. Axonal migration of protein and glycoprotein to nerve endings. 3. Cell fraction analysis of chicken ciliary ganglion after intracerebral injection of labeled precursors of proteins and glycoproteins. Brain Res. 1973 Sep 28;60(1):147–159. doi: 10.1016/0006-8993(73)90854-8. [DOI] [PubMed] [Google Scholar]
  12. Freedman M. S., Clark B. D., Cruz T. F., Gurd J. W., Brown I. R. Selective effects of LSD and hyperthermia on the synthesis of synaptic proteins and glycoproteins. Brain Res. 1981 Feb 23;207(1):129–145. doi: 10.1016/0006-8993(81)90683-1. [DOI] [PubMed] [Google Scholar]
  13. Heikkila J. J., Brown I. R. Disaggregation of brain polysomes after LSD in vivo. Involvement of LSD-induced hyperthermia. Neurochem Res. 1979 Dec;4(6):763–776. doi: 10.1007/BF00964473. [DOI] [PubMed] [Google Scholar]
  14. Heikkila J. J., Cosgrove J. W., Brown I. R. Cell-free translation of free and membrane-bound polysomes and polyadenylated mRNA from rabbit brain following administration of d-lysergic acid diethylamide in vivo. J Neurochem. 1981 Mar;36(3):1229–1238. doi: 10.1111/j.1471-4159.1981.tb01722.x. [DOI] [PubMed] [Google Scholar]
  15. Hightower L. E., White F. P. Cellular responses to stress: comparison of a family of 71--73-kilodalton proteins rapidly synthesized in rat tissue slices and canavanine-treated cells in culture. J Cell Physiol. 1981 Aug;108(2):261–275. doi: 10.1002/jcp.1041080216. [DOI] [PubMed] [Google Scholar]
  16. Hoffman P. N., Lasek R. J. The slow component of axonal transport. Identification of major structural polypeptides of the axon and their generality among mammalian neurons. J Cell Biol. 1975 Aug;66(2):351–366. doi: 10.1083/jcb.66.2.351. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Holbrook L., Brown I. R. Disaggregation of brain polysomes after D-lysergic acid diethylamide administration in vivo: mechanism and effect of age and environment. J Neurochem. 1977 Sep;29(3):461–467. doi: 10.1111/j.1471-4159.1977.tb10694.x. [DOI] [PubMed] [Google Scholar]
  18. Holbrook L., Brown I. R. Disaggregation of brain polysomes after administration of d-lysergic acid diethylamide (LSD) in vivo. J Neurochem. 1976 Jul;27(1):77–82. doi: 10.1111/j.1471-4159.1976.tb01546.x. [DOI] [PubMed] [Google Scholar]
  19. Holbrook L., Brown I. Antipsychotic drugs block LSD-induced disaggregation of brain polysomes. Life Sci. 1977 Oct 1;21(7):1037–1044. doi: 10.1016/0024-3205(77)90272-7. [DOI] [PubMed] [Google Scholar]
  20. Inasi B. S., Brown I. R. Synthesis of a heat shock protein in the microvascular system of the rabbit brain following elevation of body temperature. Biochem Biophys Res Commun. 1982 Jun 15;106(3):881–887. doi: 10.1016/0006-291x(82)91793-4. [DOI] [PubMed] [Google Scholar]
  21. Kelley P. M., Schlesinger M. J. The effect of amino acid analogues and heat shock on gene expression in chicken embryo fibroblasts. Cell. 1978 Dec;15(4):1277–1286. doi: 10.1016/0092-8674(78)90053-3. [DOI] [PubMed] [Google Scholar]
  22. Kluger M. J., Gonzalez R. R., Stolwijk J. A. Temperature regulation in the exercising rabbit. Am J Physiol. 1973 Jan;224(1):130–135. doi: 10.1152/ajplegacy.1973.224.1.130. [DOI] [PubMed] [Google Scholar]
  23. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  24. Laskey R. A., Mills A. D. Quantitative film detection of 3H and 14C in polyacrylamide gels by fluorography. Eur J Biochem. 1975 Aug 15;56(2):335–341. doi: 10.1111/j.1432-1033.1975.tb02238.x. [DOI] [PubMed] [Google Scholar]
  25. Levinson W., Mikelens P., Oppermann H., Jackson J. Effect of antabuse (disulfiram) on Rous sarcoma virus and on eukaryotic cells. Biochim Biophys Acta. 1978 Jun 22;519(1):65–75. doi: 10.1016/0005-2787(78)90062-x. [DOI] [PubMed] [Google Scholar]
  26. Levinson W., Oppermann H., Jackson J. Induction of four proteins in eukaryotic cells by kethoxal bis(thiosemicarbazone). Biochim Biophys Acta. 1978 May 23;518(3):401–412. doi: 10.1016/0005-2787(78)90159-4. [DOI] [PubMed] [Google Scholar]
  27. Levinson W., Oppermann H., Jackson J. Transition series metals and sulfhydryl reagents induce the synthesis of four proteins in eukaryotic cells. Biochim Biophys Acta. 1980;606(1):170–180. doi: 10.1016/0005-2787(80)90108-2. [DOI] [PubMed] [Google Scholar]
  28. Li G. C., Werb Z. Correlation between synthesis of heat shock proteins and development of thermotolerance in Chinese hamster fibroblasts. Proc Natl Acad Sci U S A. 1982 May;79(10):3218–3222. doi: 10.1073/pnas.79.10.3218. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Loomis W. F., Wheeler S. Heat shock response of Dictyostelium. Dev Biol. 1980 Oct;79(2):399–408. doi: 10.1016/0012-1606(80)90125-6. [DOI] [PubMed] [Google Scholar]
  30. McAlister L., Finkelstein D. B. Heat shock proteins and thermal resistance in yeast. Biochem Biophys Res Commun. 1980 Apr 14;93(3):819–824. doi: 10.1016/0006-291x(80)91150-x. [DOI] [PubMed] [Google Scholar]
  31. O'Farrell P. H. High resolution two-dimensional electrophoresis of proteins. J Biol Chem. 1975 May 25;250(10):4007–4021. [PMC free article] [PubMed] [Google Scholar]
  32. Tanguay R. M. Genetic regulation during heat shock and function of heat-shock proteins: a review. Can J Biochem Cell Biol. 1983 Jun;61(6):387–394. doi: 10.1139/o83-053. [DOI] [PubMed] [Google Scholar]
  33. Tytell M., Black M. M., Garner J. A., Lasek R. J. Axonal transport: each major rate component reflects the movement of distinct macromolecular complexes. Science. 1981 Oct 9;214(4517):179–181. doi: 10.1126/science.6169148. [DOI] [PubMed] [Google Scholar]
  34. White F. P. Differences in protein synthesized in vivo and in vitro by cells associated with the cerebral microvasculature. A protein synthesized in response to trauma? Neuroscience. 1980;5(10):1793–1799. doi: 10.1016/0306-4522(80)90096-2. [DOI] [PubMed] [Google Scholar]
  35. White F. P. The induction of "stress" proteins in organ slices from brain, heart, and lung as a function of postnatal development. J Neurosci. 1981 Nov;1(11):1312–1319. doi: 10.1523/JNEUROSCI.01-11-01312.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Willard M., Cowan W. M., Vagelos P. R. The polypeptide composition of intra-axonally transported proteins: evidence for four transport velocities. Proc Natl Acad Sci U S A. 1974 Jun;71(6):2183–2187. doi: 10.1073/pnas.71.6.2183. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES