Abstract
Neurotransmitters play a variety of important roles during nervous system development. In the present study, we hypothesized that neurotransmitter phenotype of both projecting and target cells is an important factor for the final synaptic linkage and its specificity. To test this hypothesis, we used transgenic techniques to convert serotonin/melatonin-producing cells of the pineal gland into cells that also produce dopamine and investigated the innervation of the phenotypically altered target cells. This phenotypic alteration markedly reduced the noradrenergic innervation originating from the superior cervical ganglia. Although the mechanism by which the reduction occurs is presently unknown, quantitative enzyme-linked immunoassay showed the presence of the equivalent amounts of nerve growth factor (NGF) in the control and transgenic pineal glands, suggesting that it occurred in a NGF-independent manner. The results suggest that target neurotransmitter phenotype influences the formation of afferent connections during development.
Full text
PDF




Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Aoki C., Joh T. H., Pickel V. M. Ultrastructural localization of beta-adrenergic receptor-like immunoreactivity in the cortex and neostriatum of rat brain. Brain Res. 1987 Dec 29;437(2):264–282. doi: 10.1016/0006-8993(87)91642-8. [DOI] [PubMed] [Google Scholar]
- Colamarino S. A., Tessier-Lavigne M. The axonal chemoattractant netrin-1 is also a chemorepellent for trochlear motor axons. Cell. 1995 May 19;81(4):621–629. doi: 10.1016/0092-8674(95)90083-7. [DOI] [PubMed] [Google Scholar]
- Dodd J., Schuchardt A. Axon guidance: a compelling case for repelling growth cones. Cell. 1995 May 19;81(4):471–474. doi: 10.1016/0092-8674(95)90066-7. [DOI] [PubMed] [Google Scholar]
- Fiszman M. L., Zuddas A., Masana M. I., Barker J. L., di Porzio U. Dopamine synthesis precedes dopamine uptake in embryonic rat mesencephalic neurons. J Neurochem. 1991 Feb;56(2):392–399. doi: 10.1111/j.1471-4159.1991.tb08164.x. [DOI] [PubMed] [Google Scholar]
- Frank E., Wenner P. Environmental specification of neuronal connectivity. Neuron. 1993 May;10(5):779–785. doi: 10.1016/0896-6273(93)90194-v. [DOI] [PubMed] [Google Scholar]
- García-Mauriño J. E., Boya J., López-Muñoz F., Calvo J. L. Immunohistochemical localization of nerve growth factor in the rat pineal gland. Brain Res. 1992 Jul 10;585(1-2):255–259. doi: 10.1016/0006-8993(92)91214-y. [DOI] [PubMed] [Google Scholar]
- Goodman C. S., Shatz C. J. Developmental mechanisms that generate precise patterns of neuronal connectivity. Cell. 1993 Jan;72 (Suppl):77–98. doi: 10.1016/s0092-8674(05)80030-3. [DOI] [PubMed] [Google Scholar]
- Govitrapong P., Hama Y., Pfeiffer R., Ebadi M. Status of dopamine in bovine pineal glands and the stimulation of N-acetyltransferase activity by D2-dopaminergic receptor agonists in the rat pineal glands in culture. J Pineal Res. 1989;6(1):17–31. doi: 10.1111/j.1600-079x.1989.tb00399.x. [DOI] [PubMed] [Google Scholar]
- Govitrapong P., Murrin L. C., Ebadi M. Characterization of dopaminergic receptor sites in bovine pineal gland. J Pineal Res. 1984;1(3):215–226. doi: 10.1111/j.1600-079x.1984.tb00213.x. [DOI] [PubMed] [Google Scholar]
- Habecker B. A., Landis S. C. Noradrenergic regulation of cholinergic differentiation. Science. 1994 Jun 10;264(5165):1602–1604. doi: 10.1126/science.8202714. [DOI] [PubMed] [Google Scholar]
- Haydon P. G., McCobb D. P., Kater S. B. Serotonin selectively inhibits growth cone motility and synaptogenesis of specific identified neurons. Science. 1984 Nov 2;226(4674):561–564. doi: 10.1126/science.6093252. [DOI] [PubMed] [Google Scholar]
- Hermes B., Hiemke C., Reuss S. Day- and nighttime content of monoamines and their metabolites in the pineal gland of rat and hamster. Neurosci Lett. 1994 Sep 26;179(1-2):119–122. doi: 10.1016/0304-3940(94)90949-0. [DOI] [PubMed] [Google Scholar]
- Hernández G., Bello A. R., López-Coviella I., Abreu P., Fajardo N., Reiter R. J., Hernández A., Alonso R. Tyrosine hydroxylase activity in peripherally denervated rat pineal gland. Neurosci Lett. 1994 Aug 15;177(1-2):131–134. doi: 10.1016/0304-3940(94)90062-0. [DOI] [PubMed] [Google Scholar]
- Hoyle G. W., Mercer E. H., Palmiter R. D., Brinster R. L. Expression of NGF in sympathetic neurons leads to excessive axon outgrowth from ganglia but decreased terminal innervation within tissues. Neuron. 1993 Jun;10(6):1019–1034. doi: 10.1016/0896-6273(93)90051-r. [DOI] [PubMed] [Google Scholar]
- Huh S. O., Park D. H., Cho J. Y., Joh T. H., Son J. H. A 6.1 kb 5' upstream region of the mouse tryptophan hydroxylase gene directs expression of E. coli lacZ to major serotonergic brain regions and pineal gland in transgenic mice. Brain Res Mol Brain Res. 1994 Jul;24(1-4):145–152. doi: 10.1016/0169-328x(94)90126-0. [DOI] [PubMed] [Google Scholar]
- Håkanson R., Lombard des Gouttes M. N., Owman C. Activities of tryptophan hydroxylase, dopa decarboxylase, and monoamine oxidase as correlated with the appearance of monoamines in developing rat pineal gland. Life Sci. 1967 Dec 15;6(24):2577–2585. doi: 10.1016/0024-3205(67)90107-5. [DOI] [PubMed] [Google Scholar]
- Jaenisch R. Transgenic animals. Science. 1988 Jun 10;240(4858):1468–1474. doi: 10.1126/science.3287623. [DOI] [PubMed] [Google Scholar]
- Kennedy T. E., Serafini T., de la Torre J. R., Tessier-Lavigne M. Netrins are diffusible chemotropic factors for commissural axons in the embryonic spinal cord. Cell. 1994 Aug 12;78(3):425–435. doi: 10.1016/0092-8674(94)90421-9. [DOI] [PubMed] [Google Scholar]
- Kobayashi K., Kaneda N., Ichinose H., Kishi F., Nakazawa A., Kurosawa Y., Fujita K., Nagatsu T. Isolation of a full-length cDNA clone encoding human tyrosine hydroxylase type 3. Nucleic Acids Res. 1987 Aug 25;15(16):6733–6733. doi: 10.1093/nar/15.16.6733. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Korsching S., Thoenen H. Nerve growth factor in sympathetic ganglia and corresponding target organs of the rat: correlation with density of sympathetic innervation. Proc Natl Acad Sci U S A. 1983 Jun;80(11):3513–3516. doi: 10.1073/pnas.80.11.3513. [DOI] [PMC free article] [PubMed] [Google Scholar]
- LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
- Lankford K. L., DeMello F. G., Klein W. L. D1-type dopamine receptors inhibit growth cone motility in cultured retina neurons: evidence that neurotransmitters act as morphogenic growth regulators in the developing central nervous system. Proc Natl Acad Sci U S A. 1988 Jun;85(12):4567–4571. doi: 10.1073/pnas.85.12.4567-a. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lankford K., De Mello F. G., Klein W. L. A transient embryonic dopamine receptor inhibits growth cone motility and neurite outgrowth in a subset of avian retina neurons. Neurosci Lett. 1987 Mar 31;75(2):169–174. doi: 10.1016/0304-3940(87)90292-8. [DOI] [PubMed] [Google Scholar]
- Lee K. F., Bachman K., Landis S., Jaenisch R. Dependence on p75 for innervation of some sympathetic targets. Science. 1994 Mar 11;263(5152):1447–1449. doi: 10.1126/science.8128229. [DOI] [PubMed] [Google Scholar]
- Lee K. F., Davies A. M., Jaenisch R. p75-deficient embryonic dorsal root sensory and neonatal sympathetic neurons display a decreased sensitivity to NGF. Development. 1994 Apr;120(4):1027–1033. doi: 10.1242/dev.120.4.1027. [DOI] [PubMed] [Google Scholar]
- Levi-Montalcini R. The nerve growth factor 35 years later. Science. 1987 Sep 4;237(4819):1154–1162. doi: 10.1126/science.3306916. [DOI] [PubMed] [Google Scholar]
- Messersmith E. K., Leonardo E. D., Shatz C. J., Tessier-Lavigne M., Goodman C. S., Kolodkin A. L. Semaphorin III can function as a selective chemorepellent to pattern sensory projections in the spinal cord. Neuron. 1995 May;14(5):949–959. doi: 10.1016/0896-6273(95)90333-x. [DOI] [PubMed] [Google Scholar]
- O'Leary D. D., Koester S. E. Development of projection neuron types, axon pathways, and patterned connections of the mammalian cortex. Neuron. 1993 Jun;10(6):991–1006. doi: 10.1016/0896-6273(93)90049-w. [DOI] [PubMed] [Google Scholar]
- Pacholczyk T., Blakely R. D., Amara S. G. Expression cloning of a cocaine- and antidepressant-sensitive human noradrenaline transporter. Nature. 1991 Mar 28;350(6316):350–354. doi: 10.1038/350350a0. [DOI] [PubMed] [Google Scholar]
- Palmiter R. D., Brinster R. L. Germ-line transformation of mice. Annu Rev Genet. 1986;20:465–499. doi: 10.1146/annurev.ge.20.120186.002341. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Park D. H., Park H. S., Joh T. H., Anwar M., Ruggiero D. A. Strain differences between albino and pigmented rats in monoamine-synthesizing enzyme activities of brain, retina and adrenal gland. Brain Res. 1990 Feb 5;508(2):301–304. doi: 10.1016/0006-8993(90)90412-5. [DOI] [PubMed] [Google Scholar]
- Püschel A. W., Adams R. H., Betz H. Murine semaphorin D/collapsin is a member of a diverse gene family and creates domains inhibitory for axonal extension. Neuron. 1995 May;14(5):941–948. doi: 10.1016/0896-6273(95)90332-1. [DOI] [PubMed] [Google Scholar]
- Reiter R. J. Pineal melatonin: cell biology of its synthesis and of its physiological interactions. Endocr Rev. 1991 May;12(2):151–180. doi: 10.1210/edrv-12-2-151. [DOI] [PubMed] [Google Scholar]
- Serafini T., Kennedy T. E., Galko M. J., Mirzayan C., Jessell T. M., Tessier-Lavigne M. The netrins define a family of axon outgrowth-promoting proteins homologous to C. elegans UNC-6. Cell. 1994 Aug 12;78(3):409–424. doi: 10.1016/0092-8674(94)90420-0. [DOI] [PubMed] [Google Scholar]
- Simonneaux V., Murrin L. C., Ebadi M. Characterization of D1 dopamine receptors in the bovine pineal gland with [3H]SCH 23390. J Pharmacol Exp Ther. 1990 Apr;253(1):214–220. [PubMed] [Google Scholar]
- Specht L. A., Pickel V. M., Joh T. H., Reis D. J. Light-microscopic immunocytochemical localization of tyrosine hydroxylase in prenatal rat brain. I. Early ontogeny. J Comp Neurol. 1981 Jun 20;199(2):233–253. doi: 10.1002/cne.901990207. [DOI] [PubMed] [Google Scholar]
- Specht L. A., Pickel V. M., Joh T. H., Reis D. J. Light-microscopic immunocytochemical localization of tyrosine hydroxylase in prenatal rat brain. II. Late ontogeny. J Comp Neurol. 1981 Jun 20;199(2):255–276. doi: 10.1002/cne.901990208. [DOI] [PubMed] [Google Scholar]
- Stone D. M., Grillo M., Margolis F. L., Joh T. H., Baker H. Differential effect of functional olfactory bulb deafferentation on tyrosine hydroxylase and glutamic acid decarboxylase messenger RNA levels in rodent juxtaglomerular neurons. J Comp Neurol. 1991 Sep 8;311(2):223–233. doi: 10.1002/cne.903110205. [DOI] [PubMed] [Google Scholar]
- Teitelman G., Baker H., Joh T. H., Reis D. J. Appearance of catecholamine-synthesizing enzymes during development of rat sympathetic nervous system: possible role of tissue environment. Proc Natl Acad Sci U S A. 1979 Jan;76(1):509–513. doi: 10.1073/pnas.76.1.509. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Thoenen H., Barde Y. A. Physiology of nerve growth factor. Physiol Rev. 1980 Oct;60(4):1284–1335. doi: 10.1152/physrev.1980.60.4.1284. [DOI] [PubMed] [Google Scholar]
- Weskamp G., Otten U. An enzyme-linked immunoassay for nerve growth factor (NGF): a tool for studying regulatory mechanisms involved in NGF production in brain and in peripheral tissues. J Neurochem. 1987 Jun;48(6):1779–1786. doi: 10.1111/j.1471-4159.1987.tb05736.x. [DOI] [PubMed] [Google Scholar]