Abstract
An estrogen (E)-binding molecule having both occupied and unoccupied sites is restricted to nuclear subfractions in the testis of the spiny dogfish (Squalus acanthias). We investigated the hypothesis that a species characterized by high body-fluid osmolarity (1010 mosM) has an estrogen receptor (ER) that binds to chromatin with high affinity and consequently resists redistribution during tissue processing. Although the steroid binding and sedimentation properties of the Squalus nuclear ER conformed to those of classical ER, its elution maximum from DNA-cellulose was unusually high (0.55 M NaCl). A tendency to adhere tightly to cell nuclei was reflected in the high salt concentration (0.43 M KCl) required to extract 50% of the receptors from the nuclear compartment during homogenization and in the stability of the nuclear ER population in the presence of high concentrations of a nonionic solute (urea) or increased buffer volume. Mixing and redistribution experiments showed that nuclear ER could be quantitatively and qualitatively measured in cytosolic extracts, ruling out the possibility that soluble receptors were being masked. Although Squalus oviduct ER was similar to that of testis, ER in the testis and liver of a related elasmobranch (Potamotrygon) that maintains osmotic equilibrium at 300 mosM more closely resembled mammalian ER in its elution maximum from DNA-cellulose (0.22 M NaCl) and cytosolic/nuclear ratios in low-salt buffers. We conclude that Squalus testis has a single ER pool located exclusively in the nuclear compartment. These observations support a revised concept of steroid action and further indicate that the chromatin affinity of the hormone-ER complex is an important factor in determining subfractional distribution during tissue processing.
Full text
PDF




Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Forster R. P., Goldstein L. Amino acids and cell regulation. Yale J Biol Med. 1979 Nov-Dec;52(6):497–515. [PMC free article] [PubMed] [Google Scholar]
- Gschwendt M., Kittstein W. Transformation of the estrogen-receptor complex from chick oviduct in 2 steps. Mol Cell Endocrinol. 1980 Dec;20(3):251–260. doi: 10.1016/0303-7207(80)90041-6. [DOI] [PubMed] [Google Scholar]
- Hayward M. A., Mitchell T. A., Shapiro D. J. Induction of estrogen receptor and reversal of the nuclear/cytoplasmic receptor ratio during vitellogenin synthesis and withdrawal in Xenopus laevis. J Biol Chem. 1980 Dec 10;255(23):11308–11312. [PubMed] [Google Scholar]
- Ho S. M., Tsang P., Callard I. P. Some properties of a steroid-binding protein in the plasma of an ovoviviparous dogfish, Squalus acanthias, at different stages of the life cycle. Biol Reprod. 1980 Sep;23(2):281–289. doi: 10.1095/biolreprod23.2.281. [DOI] [PubMed] [Google Scholar]
- Hunziker W., Walters M. R., Bishop J. E., Norman A. W. Unoccupied and in vitro and in vivo occupied 1,25-dihydroxyvitamin D3 intestinal receptors. Multiple biochemical forms and evidence for transformation. J Biol Chem. 1983 Jul 25;258(14):8642–8648. [PubMed] [Google Scholar]
- Jenkins N., Joss J. P., Dodd J. M. Biochemical and autoradiographic studies on the oestradiol-concentrating cells in the diencephalon and pituitary gland of the female dogfish (Scyliorhinus canicula L.). Gen Comp Endocrinol. 1980 Feb;40(2):211–219. doi: 10.1016/0016-6480(80)90124-0. [DOI] [PubMed] [Google Scholar]
- Jensen E. V., Greene G. L., Closs L. E., DeSombre E. R., Nadji M. Receptors reconsidered: a 20-year perspective. Recent Prog Horm Res. 1982;38:1–40. doi: 10.1016/b978-0-12-571138-8.50006-8. [DOI] [PubMed] [Google Scholar]
- King W. J., Greene G. L. Monoclonal antibodies localize oestrogen receptor in the nuclei of target cells. Nature. 1984 Feb 23;307(5953):745–747. doi: 10.1038/307745a0. [DOI] [PubMed] [Google Scholar]
- Mak P., Callard I. P., Callard G. V. Characterization of an estrogen receptor in the testis of the urodele amphibian Necturus maculosus. Biol Reprod. 1983 Mar;28(2):261–270. doi: 10.1095/biolreprod28.2.261. [DOI] [PubMed] [Google Scholar]
- Mak P., Ho S. M., Callard I. P. Characterization of an estrogen receptor in the turtle testis. Gen Comp Endocrinol. 1983 Nov;52(2):182–189. doi: 10.1016/0016-6480(83)90111-9. [DOI] [PubMed] [Google Scholar]
- Mak P., Ho S. M., Callard I. P. Estrogen receptors in the turtle brain. Brain Res. 1982 Jan 7;231(1):63–74. doi: 10.1016/0006-8993(82)90007-5. [DOI] [PubMed] [Google Scholar]
- Martin P. M., Sheridan P. J. Towards a new model for the mechanism of action of steroids. J Steroid Biochem. 1982 Feb;16(2):215–229. doi: 10.1016/0022-4731(82)90170-4. [DOI] [PubMed] [Google Scholar]
- Mester J., Baulieu E. E. Nuclear estrogen receptor of chick liver. Biochim Biophys Acta. 1972 Jan 28;261(1):236–244. doi: 10.1016/0304-4165(72)90334-0. [DOI] [PubMed] [Google Scholar]
- Salhanick A. R., Vito C. C., Fox T. O., Callard I. P. Estrogen-binding proteins in the oviduct of the turtle, Chrysemys picta: evidence for a receptor species. Endocrinology. 1979 Dec;105(6):1388–1395. doi: 10.1210/endo-105-6-1388. [DOI] [PubMed] [Google Scholar]
- Shoemaker V. H., Nagy K. A. Osmoregulation in amphibians and reptiles. Annu Rev Physiol. 1977;39:449–471. doi: 10.1146/annurev.ph.39.030177.002313. [DOI] [PubMed] [Google Scholar]
- Sonnenschein C., Soto A. M., Colofiore J., Farookhi R. Estrogen target cells. Establishment of a cell line derived from the rat pituitary tumor MtT/F4. Exp Cell Res. 1976 Aug;101(1):15–22. doi: 10.1016/0014-4827(76)90406-7. [DOI] [PubMed] [Google Scholar]
- Thieulant M. L., Samperez S., Jouan P. Evidence for 5 alpha-androstane-3 beta, 17 beta-diol binding to the estrogen receptor in the cytosol from male rat pituitary. Endocrinology. 1981 Apr;108(4):1552–1560. doi: 10.1210/endo-108-4-1552. [DOI] [PubMed] [Google Scholar]
- Thorson T. B., Cowan C. M., Watson D. E. Potamotrygon spp.: elasmobranchs with low urea content. Science. 1967 Oct 20;158(3799):375–377. doi: 10.1126/science.158.3799.375. [DOI] [PubMed] [Google Scholar]
- Vito C. C., Fox T. O. Embryonic rodent brain contains estrogen receptors. Science. 1979 May 4;204(4392):517–519. doi: 10.1126/science.432656. [DOI] [PubMed] [Google Scholar]
- Walters M. R., Hunziker W., Konami D., Norman A. W. Factors affecting the distribution and stability of unoccupied 1,25-dihydroxyvitamin D3 receptors. J Recept Res. 1981;2(4):331–346. doi: 10.3109/107998981809038871. [DOI] [PubMed] [Google Scholar]
- Walters M. R., Hunziker W., Norman A. W. A mathematical model describing the subcellular localization of non-membrane bound steroid, seco-steroid and thyronine receptors. J Steroid Biochem. 1981 Dec;15:491–495. doi: 10.1016/0022-4731(81)90320-4. [DOI] [PubMed] [Google Scholar]
- Walters M. R., Hunziker W., Norman A. W. Unoccupied 1,25-dihydroxyvitamin D3 receptors. Nuclear/cytosol ratio depends on ionic strength. J Biol Chem. 1980 Jul 25;255(14):6799–6805. [PubMed] [Google Scholar]
- Welshons W. V., Lieberman M. E., Gorski J. Nuclear localization of unoccupied oestrogen receptors. Nature. 1984 Feb 23;307(5953):747–749. doi: 10.1038/307747a0. [DOI] [PubMed] [Google Scholar]
- Williams D., Gorski J. Kinetic and equilibrium analysis of estradiol in uterus: a model of binding-site distribution in uterine cells. Proc Natl Acad Sci U S A. 1972 Nov;69(11):3464–3468. doi: 10.1073/pnas.69.11.3464. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yancey P. H., Clark M. E., Hand S. C., Bowlus R. D., Somero G. N. Living with water stress: evolution of osmolyte systems. Science. 1982 Sep 24;217(4566):1214–1222. doi: 10.1126/science.7112124. [DOI] [PubMed] [Google Scholar]
- Yund M. A., King D. S., Fristrom J. W. Ecdysteroid receptors in imaginal discs of Drosophila melanogaster. Proc Natl Acad Sci U S A. 1978 Dec;75(12):6039–6043. doi: 10.1073/pnas.75.12.6039. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zava D. T., McGuire W. L. Estrogen receptor. Unoccupied sites in nuclei of a breast tumor cell line. J Biol Chem. 1977 Jun 10;252(11):3703–3708. [PubMed] [Google Scholar]
