Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1996 Apr 2;93(7):2879–2883. doi: 10.1073/pnas.93.7.2879

CpG motifs present in bacteria DNA rapidly induce lymphocytes to secrete interleukin 6, interleukin 12, and interferon gamma.

D M Klinman 1, A K Yi 1, S L Beaucage 1, J Conover 1, A M Krieg 1
PMCID: PMC39727  PMID: 8610135

Abstract

Bacterial infection stimulates the host to mount a rapid inflammatory response. A 6-base DNA motif consisting of an unmethylated CpG dinucleotide flanked by two 5' purines and two 3' pyrimidines was shown to contribute to this response by inducing polygonal B-cell activation. This stimulatory motif is 20 times more common in the DNA of bacteria than higher vertebrates. The current work shows that the same motif induces the rapid and coordinated secretion of interleukin (IL) 6, IL-12, and interferon gamma (but not IL-2, IL-3, IL-4, IL-5, or IL-10) in vivo and in vitro. Stimulatory CpG DNA motifs induced B, T, and natural killer cells to secrete cytokine more effectively than did lipopolysaccharide. Thus, immune recognition of bacterial DNA may contribute to the cytokine, as well as the antibody production characteristic of an innate inflammatory response.

Full text

PDF
2879

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bohn E., Heesemann J., Ehlers S., Autenrieth I. B. Early gamma interferon mRNA expression is associated with resistance of mice against Yersinia enterocolitica. Infect Immun. 1994 Jul;62(7):3027–3032. doi: 10.1128/iai.62.7.3027-3032.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Cardon L. R., Burge C., Clayton D. A., Karlin S. Pervasive CpG suppression in animal mitochondrial genomes. Proc Natl Acad Sci U S A. 1994 Apr 26;91(9):3799–3803. doi: 10.1073/pnas.91.9.3799. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Field A. K., Tytell A. A., Lampson G. P., Hilleman M. R. Inducers of interferon and host resistance. II. Multistranded synthetic polynucleotide complexes. Proc Natl Acad Sci U S A. 1967 Sep;58(3):1004–1010. doi: 10.1073/pnas.58.3.1004. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Gilkeson G. S., Grudier J. P., Karounos D. G., Pisetsky D. S. Induction of anti-double stranded DNA antibodies in normal mice by immunization with bacterial DNA. J Immunol. 1989 Mar 1;142(5):1482–1486. [PubMed] [Google Scholar]
  5. Gilkeson G. S., Pippen A. M., Pisetsky D. S. Induction of cross-reactive anti-dsDNA antibodies in preautoimmune NZB/NZW mice by immunization with bacterial DNA. J Clin Invest. 1995 Mar;95(3):1398–1402. doi: 10.1172/JCI117793. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Heinzel F. P., Sadick M. D., Mutha S. S., Locksley R. M. Production of interferon gamma, interleukin 2, interleukin 4, and interleukin 10 by CD4+ lymphocytes in vivo during healing and progressive murine leishmaniasis. Proc Natl Acad Sci U S A. 1991 Aug 15;88(16):7011–7015. doi: 10.1073/pnas.88.16.7011. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Hirano T., Akira S., Taga T., Kishimoto T. Biological and clinical aspects of interleukin 6. Immunol Today. 1990 Dec;11(12):443–449. doi: 10.1016/0167-5699(90)90173-7. [DOI] [PubMed] [Google Scholar]
  8. Hirano T., Yasukawa K., Harada H., Taga T., Watanabe Y., Matsuda T., Kashiwamura S., Nakajima K., Koyama K., Iwamatsu A. Complementary DNA for a novel human interleukin (BSF-2) that induces B lymphocytes to produce immunoglobulin. Nature. 1986 Nov 6;324(6092):73–76. doi: 10.1038/324073a0. [DOI] [PubMed] [Google Scholar]
  9. Klinman D. M., Haynes B. F., Conover J. Activation of interleukin 4- and interleukin 6-secreting cells by HIV-specific synthetic peptides. AIDS Res Hum Retroviruses. 1995 Jan;11(1):97–105. doi: 10.1089/aid.1995.11.97. [DOI] [PubMed] [Google Scholar]
  10. Kopf M., Baumann H., Freer G., Freudenberg M., Lamers M., Kishimoto T., Zinkernagel R., Bluethmann H., Köhler G. Impaired immune and acute-phase responses in interleukin-6-deficient mice. Nature. 1994 Mar 24;368(6469):339–342. doi: 10.1038/368339a0. [DOI] [PubMed] [Google Scholar]
  11. Krieg A. M., Yi A. K., Matson S., Waldschmidt T. J., Bishop G. A., Teasdale R., Koretzky G. A., Klinman D. M. CpG motifs in bacterial DNA trigger direct B-cell activation. Nature. 1995 Apr 6;374(6522):546–549. doi: 10.1038/374546a0. [DOI] [PubMed] [Google Scholar]
  12. Le J. M., Vilcek J. Interleukin 6: a multifunctional cytokine regulating immune reactions and the acute phase protein response. Lab Invest. 1989 Dec;61(6):588–602. [PubMed] [Google Scholar]
  13. Marrack P., Kappler J. Subversion of the immune system by pathogens. Cell. 1994 Jan 28;76(2):323–332. doi: 10.1016/0092-8674(94)90339-5. [DOI] [PubMed] [Google Scholar]
  14. Messina J. P., Gilkeson G. S., Pisetsky D. S. Stimulation of in vitro murine lymphocyte proliferation by bacterial DNA. J Immunol. 1991 Sep 15;147(6):1759–1764. [PubMed] [Google Scholar]
  15. Muraguchi A., Hirano T., Tang B., Matsuda T., Horii Y., Nakajima K., Kishimoto T. The essential role of B cell stimulatory factor 2 (BSF-2/IL-6) for the terminal differentiation of B cells. J Exp Med. 1988 Feb 1;167(2):332–344. doi: 10.1084/jem.167.2.332. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Murray H. W. Gamma interferon, cytokine-induced macrophage activation, and antimicrobial host defense. In vitro, in animal models, and in humans. Diagn Microbiol Infect Dis. 1990 Sep-Oct;13(5):411–421. doi: 10.1016/0732-8893(90)90012-k. [DOI] [PubMed] [Google Scholar]
  17. Oehler J. R., Herberman R. B. Natural cell-mediated cytotoxicity in rats. III. Effects of immunopharmacologic treatments on natural reactivity and on reactivity augmented by polyinosinic-polycytidylic acid. Int J Cancer. 1978 Feb 15;21(2):221–229. doi: 10.1002/ijc.2910210214. [DOI] [PubMed] [Google Scholar]
  18. Paul W. E., Seder R. A., Plaut M. Lymphokine and cytokine production by Fc epsilon RI+ cells. Adv Immunol. 1993;53:1–29. [PubMed] [Google Scholar]
  19. Razin A., Friedman J. DNA methylation and its possible biological roles. Prog Nucleic Acid Res Mol Biol. 1981;25:33–52. doi: 10.1016/s0079-6603(08)60482-1. [DOI] [PubMed] [Google Scholar]
  20. Semple J. W., Allen D., Chang W., Castaldi P., Freedman J. Rapid separation of CD4+ and CD19+ lymphocyte populations from human peripheral blood by a magnetic activated cell sorter (MACS). Cytometry. 1993 Nov;14(8):955–960. doi: 10.1002/cyto.990140816. [DOI] [PubMed] [Google Scholar]
  21. Shirai A., Holmes K., Klinman D. Detection and quantitation of cells secreting IL-6 under physiologic conditions in BALB/c mice. J Immunol. 1993 Feb 1;150(3):793–799. [PubMed] [Google Scholar]
  22. Shirai A., Sierra V., Kelly C. I., Klinman D. M. Individual cells simultaneously produce both IL-4 and IL-6 in vivo. Cytokine. 1994 May;6(3):329–336. doi: 10.1016/1043-4666(94)90030-2. [DOI] [PubMed] [Google Scholar]
  23. Trinchieri G. Interleukin-12: a cytokine produced by antigen-presenting cells with immunoregulatory functions in the generation of T-helper cells type 1 and cytotoxic lymphocytes. Blood. 1994 Dec 15;84(12):4008–4027. [PubMed] [Google Scholar]
  24. Uyttenhove C., Coulie P. G., Van Snick J. T cell growth and differentiation induced by interleukin-HP1/IL-6, the murine hybridoma/plasmacytoma growth factor. J Exp Med. 1988 Apr 1;167(4):1417–1427. doi: 10.1084/jem.167.4.1417. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Van Damme J., Schaafsma M. R., Fibbe W. E., Falkenburg J. H., Opdenakker G., Billiau A. Simultaneous production of interleukin 6, interferon-beta and colony-stimulating activity by fibroblasts after viral and bacterial infection. Eur J Immunol. 1989 Jan;19(1):163–168. doi: 10.1002/eji.1830190126. [DOI] [PubMed] [Google Scholar]
  26. Vilcek J., Ng M. H., Friedman-Kien A. E., Krawciw T. Induction of interferon synthesis by synthetic double-stranded polynucleotides. J Virol. 1968 Jun;2(6):648–650. doi: 10.1128/jvi.2.6.648-650.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Yamamoto S., Yamamoto T., Kataoka T., Kuramoto E., Yano O., Tokunaga T. Unique palindromic sequences in synthetic oligonucleotides are required to induce IFN [correction of INF] and augment IFN-mediated [correction of INF] natural killer activity. J Immunol. 1992 Jun 15;148(12):4072–4076. [PubMed] [Google Scholar]
  28. Yamamoto S., Yamamoto T., Shimada S., Kuramoto E., Yano O., Kataoka T., Tokunaga T. DNA from bacteria, but not from vertebrates, induces interferons, activates natural killer cells and inhibits tumor growth. Microbiol Immunol. 1992;36(9):983–997. doi: 10.1111/j.1348-0421.1992.tb02102.x. [DOI] [PubMed] [Google Scholar]
  29. Yamamoto T., Yamamoto S., Kataoka T., Tokunaga T. Lipofection of synthetic oligodeoxyribonucleotide having a palindromic sequence of AACGTT to murine splenocytes enhances interferon production and natural killer activity. Microbiol Immunol. 1994;38(10):831–836. doi: 10.1111/j.1348-0421.1994.tb01867.x. [DOI] [PubMed] [Google Scholar]
  30. Zhan Y., Cheers C. Endogenous interleukin-12 is involved in resistance to Brucella abortus infection. Infect Immun. 1995 Apr;63(4):1387–1390. doi: 10.1128/iai.63.4.1387-1390.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES