Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1985 Mar;82(6):1575–1579. doi: 10.1073/pnas.82.6.1575

Identification of an active site peptide of skeletal myosin after photoaffinity labeling with N-(4-azido-2-nitrophenyl)-2-aminoethyl diphosphate.

Y Okamoto, R G Yount
PMCID: PMC397314  PMID: 3157189

Abstract

The active site of skeletal myosin has been photoaffinity labeled (approximately equal to 50%) by the ADP analog N-(4-azido-2-nitrophenyl)-2-aminoethyl triphosphate (NANDP) following the cobalt phenanthroline active site trapping procedure of Wells and Yount [Wells, J. A. & Yount, R. G. (1979) Proc. Natl. Acad. Sci. USA 76, 4966-4970]. Extensive proteolytic digestion of [3H]NANDP-labeled myosin subfragment one yielded two major peptides, P1 and P2, which were purified by reversed-phase high-performance liquid chromatography. These peptides represented 50% of all labeled amino acids and contained 1 mol of the unusual amino acid epsilon-N-trimethyllysine. Analysis of P2 by Edman techniques gave a sequence Val-Asn-Pro-Tyr-Lys(Me3)-X-Leu-Pro-Val-Tyr, which corresponds to an identical sequence for residues 125-134 determined by Tong and Elzinga [Tong, S. W. & Elzinga, M. (1983) J. Biol. Chem. 258, 13100-13110] for a segment of rabbit skeletal myosin heavy chain in which X is Trp-130. P1 was identical to P2 except it contained an additional three amino acids, Asn-Pro-Gln, at the COOH-terminal end. Amino acid composition, sequence data, spectral measurements, and location of radioactive label in both P1 and P2 all indicate Trp-130 is the major site of labeling by NANDP. The adjacent epsilon-N-trimethyllysine may provide part of the binding site for the triphosphate portion of ATP.

Full text

PDF
1575

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adelstein R. S., Eisenberg E. Regulation and kinetics of the actin-myosin-ATP interaction. Annu Rev Biochem. 1980;49:921–956. doi: 10.1146/annurev.bi.49.070180.004421. [DOI] [PubMed] [Google Scholar]
  2. Brunner J., Richards F. M. Analysis of membranes photolabeled with lipid analogues. Reaction of phospholipids containing a disulfide group and a nitrene or carbene precursor with lipids and with gramicidin A. J Biol Chem. 1980 Apr 25;255(8):3319–3329. [PubMed] [Google Scholar]
  3. Chantler P. D., Szent-Györgyi A. G. Spectroscopic studies on invertebrate myosins and light chains. Biochemistry. 1978 Dec 12;17(25):5440–5448. doi: 10.1021/bi00618a018. [DOI] [PubMed] [Google Scholar]
  4. Hawke D., Yuan P. M., Shively J. E. Microsequence analysis of peptides and proteins. II. Separation of amino acid phenylthiohydantoin derivatives by high-performance liquid chromatography on octadecylsilane supports. Anal Biochem. 1982 Mar 1;120(2):302–311. doi: 10.1016/0003-2697(82)90351-7. [DOI] [PubMed] [Google Scholar]
  5. Hayashi R., Bai Y., Hata T. Kinetic studies of carboxypeptidase Y. I. Kinetic parameters for the hydrolysis of synthetic substrates. J Biochem. 1975 Jan 1;77(1?):69–79. [PubMed] [Google Scholar]
  6. Karn J., Brenner S., Barnett L. Protein structural domains in the Caenorhabditis elegans unc-54 myosin heavy chain gene are not separated by introns. Proc Natl Acad Sci U S A. 1983 Jul;80(14):4253–4257. doi: 10.1073/pnas.80.14.4253. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Miyanishi T., Maita T., Matsuda G., Tonomura Y. Differences in chemical structure around the reactive lysine residues in the burst and the nonburst heads of skeletal muscle myosin. J Biochem. 1982 Jun;91(6):1845–1853. doi: 10.1093/oxfordjournals.jbchem.a133881. [DOI] [PubMed] [Google Scholar]
  8. Morita F. Interaction of heavy meromyosin with substrate. I. Difference in ultraviolet absorption spectrum between heavy meromyosin and its Michaelis-Menten complex. J Biol Chem. 1967 Oct 10;242(19):4501–4506. [PubMed] [Google Scholar]
  9. Pope B. J., Wagner P. D., Weeds A. G. Heterogeneity of myosin heavy chains in subfragment-1 isoenzymes rabbit skeletal myosin. J Mol Biol. 1977 Jan 25;109(3):470–473. doi: 10.1016/s0022-2836(77)80024-7. [DOI] [PubMed] [Google Scholar]
  10. Sivaramakrishnan M., Burke M. The free heavy chain of vertebrate skeletal myosin subfragment 1 shows full enzymatic activity. J Biol Chem. 1982 Jan 25;257(2):1102–1105. [PubMed] [Google Scholar]
  11. Szilagyi L., Balint M., Sreter F. A., Gergely J. Photoaffinity labelling with an ATP analog of the N-terminal peptide of myosin. Biochem Biophys Res Commun. 1979 Apr 13;87(3):936–945. doi: 10.1016/0006-291x(79)92047-3. [DOI] [PubMed] [Google Scholar]
  12. Tarr G. E. A general procedure for the manual sequencing of small quantities of peptides. Anal Biochem. 1975 Feb;63(2):361–370. doi: 10.1016/0003-2697(75)90358-9. [DOI] [PubMed] [Google Scholar]
  13. Taylor E. W. Mechanism of actomyosin ATPase and the problem of muscle contraction. CRC Crit Rev Biochem. 1979;6(2):103–164. doi: 10.3109/10409237909102562. [DOI] [PubMed] [Google Scholar]
  14. Tong S. W., Elzinga M. The sequence of the NH2-terminal 204-residue fragment of the heavy chain of rabbit skeletal muscle myosin. J Biol Chem. 1983 Nov 10;258(21):13100–13110. [PubMed] [Google Scholar]
  15. Wagner P. D., Giniger E. Hydrolysis of ATP and reversible binding to F-actin by myosin heavy chains free of all light chains. Nature. 1981 Aug 6;292(5823):560–562. doi: 10.1038/292560a0. [DOI] [PubMed] [Google Scholar]
  16. Wells J. A., Yount R. G. Chemical modification of myosin by active-site trapping of metal-nucleotides with thiol crosslinking reagents. Methods Enzymol. 1982;85(Pt B):93–116. doi: 10.1016/0076-6879(82)85013-1. [DOI] [PubMed] [Google Scholar]
  17. Werber M. M., Szent-Györgyi A. G., Fasman G. D. Fluorescence studies on heavy meromyosin-substrate interaction. Biochemistry. 1972 Jul 18;11(15):2872–2883. doi: 10.1021/bi00765a021. [DOI] [PubMed] [Google Scholar]
  18. Yagi K., Otani F. Studies of enzymatically active subfragments of myosin-adenosinetriphosphatase. III. Separation of two components. J Biochem. 1974 Aug;76(2):365–373. doi: 10.1093/oxfordjournals.jbchem.a130578. [DOI] [PubMed] [Google Scholar]
  19. Yamada T., Shimizu H., Nakanishi M., Tsuboi M. Environment of the tryptophan residues in a myosin head: a hydrogen-deuterium exchange study. Biochemistry. 1981 Mar 3;20(5):1162–1168. doi: 10.1021/bi00508a018. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES