Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1985 Mar;82(6):1589–1593. doi: 10.1073/pnas.82.6.1589

Mechanism of inhibition of mitochondrial adenosine triphosphatase by dicyclohexylcarbodiimide and oligomycin: relationship to ATP synthesis.

H S Penefsky
PMCID: PMC397317  PMID: 2858849

Abstract

Measurement of the rate of [gamma-32P]ATP binding (k1) and release (k-1) from catalytic sites on submitochondrial particles permitted calculation of the affinity constant in catalytic sites (k1 = K1/k1-1) of 10(12) M-1. This value is the same as that determined previously for the solubilized ATPase (F1) from beef heart mitochondria. Treatment of submitochondrial particles with dicyclohexylcarbodiimide or oligomycin so as to cause about 90% inhibition of ATPase activity was accompanied by a decrease in the binding of [gamma-32P]ATP in high-affinity catalytic sites. Under the conditions of the experiment, it is expected that the inhibitors reacted not with the ATPase itself but with other proteins in the oligomycin-sensitive ATPase complex (F0-F1). It is proposed that dicyclohexylcarbodiimide and oligomycin inhibit ATPase activity by causing a conformational change in the F0 portion of the complex that is transmitted to F1, resulting in an impaired binding of substrate in catalytic sites. These observations of apparent conformational interactions between F0 and F1 on the mitochondrial membrane are relevant to the mechanism of the coupling device that links the energy store to ATP formation in oxidative phosphorylation. It is proposed that a change in the state of ionization of one or more charged amino acid residues in F0 results in a conformational change in F0 which, transmitted to F1, reversibly alters the catalytic sites and facilitates the release of product ATP.

Full text

PDF
1589

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Azzi A., Bragadin M. A., Tamburro A. M., Santato M. Site-directed spin labeling of the mitochondrial membrane. Synthesis and utilization of the adenosine triphosphatase inhibitor (N-(2, 2, 6, 6-tetramethyl-piperidyl-1-oxyl)-N'-(cyclohexyl)-carbodiimide). J Biol Chem. 1973 Aug 10;248(15):5520–5526. [PubMed] [Google Scholar]
  2. Boyer P. D. A model for conformational coupling of membrane potential and proton translocation to ATP synthesis and to active transport. FEBS Lett. 1975 Oct 15;58(1):1–6. doi: 10.1016/0014-5793(75)80212-2. [DOI] [PubMed] [Google Scholar]
  3. Boyer P. D., Cross R. L., Momsen W. A new concept for energy coupling in oxidative phosphorylation based on a molecular explanation of the oxygen exchange reactions. Proc Natl Acad Sci U S A. 1973 Oct;70(10):2837–2839. doi: 10.1073/pnas.70.10.2837. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Choate G. L., Hutton R. L., Boyer P. D. Occurrence and significance of oxygen exchange reactions catalyzed by mitochondrial adenosine triphosphatase preparations. J Biol Chem. 1979 Jan 25;254(2):286–290. [PubMed] [Google Scholar]
  5. Cross R. L., Grubmeyer C., Penefsky H. S. Mechanism of ATP hydrolysis by beef heart mitochondrial ATPase. Rate enhancements resulting from cooperative interactions between multiple catalytic sites. J Biol Chem. 1982 Oct 25;257(20):12101–12105. [PubMed] [Google Scholar]
  6. Fillingame R. H., Peters L. K., White L. K., Mosher M. E., Paule C. R. Mutations altering aspartyl-61 of the omega subunit (uncE protein) of Escherichia coli H+ -ATPase differ in effect on coupled ATP hydrolysis. J Bacteriol. 1984 Jun;158(3):1078–1083. doi: 10.1128/jb.158.3.1078-1083.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Grubmeyer C., Cross R. L., Penefsky H. S. Mechanism of ATP hydrolysis by beef heart mitochondrial ATPase. Rate constants for elementary steps in catalysis at a single site. J Biol Chem. 1982 Oct 25;257(20):12092–12100. [PubMed] [Google Scholar]
  8. Grubmeyer C., Penefsky H. S. Cooperatively between catalytic sites in the mechanism of action of beef heart mitochondrial adenosine triphosphatase. J Biol Chem. 1981 Apr 25;256(8):3728–3734. [PubMed] [Google Scholar]
  9. Grubmeyer C., Penefsky H. S. The presence of two hydrolytic sites on beef heart mitochondrial adenosine triphosphatase. J Biol Chem. 1981 Apr 25;256(8):3718–3727. [PubMed] [Google Scholar]
  10. Heldt H. W., Klingenberg M., Milovancev M. Differences between the ATP-ADP ratios in the mitochondrial matrix and in the extramitochondrial space. Eur J Biochem. 1972 Nov 7;30(3):434–440. doi: 10.1111/j.1432-1033.1972.tb02115.x. [DOI] [PubMed] [Google Scholar]
  11. Hutton R. L., Boyer P. D. Subunit interaction during catalysis. Alternating site cooperativity of mitochondrial adenosine triphosphatase. J Biol Chem. 1979 Oct 25;254(20):9990–9993. [PubMed] [Google Scholar]
  12. Knowles A. F., Penefsky H. S. The subunit structure of beef heart mitochondrial adenosine triphosphatase. Physical and chemical properties of isolated subunits. J Biol Chem. 1972 Oct 25;247(20):6624–6630. [PubMed] [Google Scholar]
  13. Linnett P. E., Beechey R. B. Inhibitors of the ATP synthethase system. Methods Enzymol. 1979;55:472–518. doi: 10.1016/0076-6879(79)55061-7. [DOI] [PubMed] [Google Scholar]
  14. Penefsky H. S. Mitochondrial ATPase. Adv Enzymol Relat Areas Mol Biol. 1979;49:223–280. doi: 10.1002/9780470122945.ch6. [DOI] [PubMed] [Google Scholar]
  15. Penefsky H. S. Partial resolution of the enzymes catalyzing oxidative phosphorylation. XVI. Chemical modification of mitochondrial adenosine triphosphatase. J Biol Chem. 1967 Dec 25;242(24):5789–5795. [PubMed] [Google Scholar]
  16. Penefsky H. S. Reversible binding of Pi by beef heart mitochondrial adenosine triphosphatase. J Biol Chem. 1977 May 10;252(9):2891–2899. [PubMed] [Google Scholar]
  17. Racker E., Horstman L. L. Partial resolution of the enzymes catalyzing oxidative phosphorylation. 13. Structure and function of submitochondrial particles completely resolved with respect to coupling factor. J Biol Chem. 1967 May 25;242(10):2547–2551. [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES