Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1985 Mar;82(6):1683–1687. doi: 10.1073/pnas.82.6.1683

Calmodulin accelerates the rate of polymerization of human platelet actin and alters the structural characteristics of actin filaments.

G A Piazza, R W Wallace
PMCID: PMC397336  PMID: 3856849

Abstract

Calmodulin stimulated the rate of Mg2+-induced polymerization of human platelet actin. The stimulatory effect was due to an increase in the nucleation phase of the reaction; there was no effect on the steady-state viscosity. The calmodulin antagonist trifluoperazine blocked the stimulatory effect of calmodulin. Addition of EGTA to the reaction mixture also stimulated the rate of actin polymerization; however, the effect of calmodulin on actin polymerization is not due to Ca2+ chelation, as is presumed to be the case for EGTA. Electron microscopy revealed structural differences in the filaments prepared in the presence of calmodulin as compared to those prepared with trifluoperazine. In the presence of calmodulin, the filaments were thicker, suggesting that they consisted of multiple actin polymers. In addition, numerous projections were present perpendicular to the filaments, as well as localized areas of filament bundling. It was not possible to demonstrate a direct interaction between calmodulin and actin, which raises the possibility that the calmodulin effect may be indirect through a calmodulin-binding protein or calmodulin-dependent enzyme. Regardless of whether calmodulin is acting directly or indirectly, these results provide evidence that calmodulin may play a regulatory role in either the polymerization of actin or in determining the structural characteristics of actin filaments.

Full text

PDF
1683

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Avissar N., Kaminsky E., Leibovich S. J., Oplatka A. Rabbit skeletal muscle F-actin can be stable at low ionic strength, provided trace amounts of Ca2+ are absent. Biochim Biophys Acta. 1979 Apr 25;577(2):267–272. doi: 10.1016/0005-2795(79)90030-8. [DOI] [PubMed] [Google Scholar]
  2. Carlsson L., Markey F., Blikstad I., Persson T., Lindberg U. Reorganization of actin in platelets stimulated by thrombin as measured by the DNase I inhibition assay. Proc Natl Acad Sci U S A. 1979 Dec;76(12):6376–6380. doi: 10.1073/pnas.76.12.6376. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Chafouleas J. G., Bolton W. E., Hidaka H., Boyd A. E., 3rd, Means A. R. Calmodulin and the cell cycle: involvement in regulation of cell-cycle progression. Cell. 1982 Jan;28(1):41–50. doi: 10.1016/0092-8674(82)90373-7. [DOI] [PubMed] [Google Scholar]
  4. Cheung W. Y., Bradham L. S., Lynch T. J., Lin Y. M., Tallant E. A. Protein activator of cyclic 3':5'-nucleotide phosphodiesterase of bovine or rat brain also activates its adenylate cyclase. Biochem Biophys Res Commun. 1975 Oct 6;66(3):1055–1062. doi: 10.1016/0006-291x(75)90747-0. [DOI] [PubMed] [Google Scholar]
  5. Dedman J. R., Welsh M. J., Means A. R. Ca2+-dependent regulator. Production and characterization of a monospecific antibody. J Biol Chem. 1978 Oct 25;253(20):7515–7521. [PubMed] [Google Scholar]
  6. Feinstein M. B. The role of calmodulin in hemostasis. Prog Hemost Thromb. 1982;6:25–61. [PubMed] [Google Scholar]
  7. Fox J. E., Boyles J. K., Reynolds C. C., Phillips D. R. Actin filament content and organization in unstimulated platelets. J Cell Biol. 1984 Jun;98(6):1985–1991. doi: 10.1083/jcb.98.6.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Gergely P., Castle A. G., Crawford N. Platelet phosphorylase kinase activity and its regulation by the calcium-dependent regulatory protein, calmodulin. Biochim Biophys Acta. 1980 Mar 14;612(1):50–55. doi: 10.1016/0005-2744(80)90277-6. [DOI] [PubMed] [Google Scholar]
  9. Glenney J. R., Jr, Glenney P., Osborn M., Weber K. An F-actin- and calmodulin-binding protein from isolated intestinal brush borders has a morphology related to spectrin. Cell. 1982 Apr;28(4):843–854. doi: 10.1016/0092-8674(82)90063-0. [DOI] [PubMed] [Google Scholar]
  10. Glenney J. R., Jr, Glenney P., Weber K. Erythroid spectrin, brain fodrin, and intestinal brush border proteins (TW-260/240) are related molecules containing a common calmodulin-binding subunit bound to a variant cell type-specific subunit. Proc Natl Acad Sci U S A. 1982 Jul;79(13):4002–4005. doi: 10.1073/pnas.79.13.4002. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Glenney J. R., Jr, Weber K. Calmodulin-binding proteins of the microfilaments present in isolated brush borders and microvilli of intestinal epithelial cells. J Biol Chem. 1980 Nov 25;255(22):10551–10554. [PubMed] [Google Scholar]
  12. Gordon D. J., Boyer J. L., Korn E. D. Comparative biochemistry of non-muscle actins. J Biol Chem. 1977 Nov 25;252(22):8300–8309. [PubMed] [Google Scholar]
  13. HUXLEY H. E. ELECTRON MICROSCOPE STUDIES ON THE STRUCTURE OF NATURAL AND SYNTHETIC PROTEIN FILAMENTS FROM STRIATED MUSCLE. J Mol Biol. 1963 Sep;7:281–308. doi: 10.1016/s0022-2836(63)80008-x. [DOI] [PubMed] [Google Scholar]
  14. Hathaway D. R., Adelstein R. S. Human platelet myosin light chain kinase requires the calcium-binding protein calmodulin for activity. Proc Natl Acad Sci U S A. 1979 Apr;76(4):1653–1657. doi: 10.1073/pnas.76.4.1653. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Howe C. L., Mooseker M. S., Graves T. A. Brush-border calmodulin. A major component of the isolated microvillus core. J Cell Biol. 1980 Jun;85(3):916–923. doi: 10.1083/jcb.85.3.916. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Jennings L. K., Fox J. E., Edwards H. H., Phillips D. R. Changes in the cytoskeletal structure of human platelets following thrombin activation. J Biol Chem. 1981 Jul 10;256(13):6927–6932. [PubMed] [Google Scholar]
  17. Kaplan K. L., Broekman M. J., Chernoff A., Lesznik G. R., Drillings M. Platelet alpha-granule proteins: studies on release and subcellular localization. Blood. 1979 Apr;53(4):604–618. [PubMed] [Google Scholar]
  18. Korn E. D. Actin polymerization and its regulation by proteins from nonmuscle cells. Physiol Rev. 1982 Apr;62(2):672–737. doi: 10.1152/physrev.1982.62.2.672. [DOI] [PubMed] [Google Scholar]
  19. Kosaki G., Tsujinaka T., Kambayashi J., Morimoto K., Yamamoto K., Yamagami K., Sobue K., Kakiuchi S. Specific cleavage of calmodulin-binding proteins by low Ca2+-requiring form of Ca2+-activated neutral protease in human platelets. Biochem Int. 1983 Jun;6(6):767–775. [PubMed] [Google Scholar]
  20. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  21. Le Breton G. C., Dinerstein R. J., Roth L. J., Feinberg H. Direct evidence for intracellular divalent cation redistribution associated with platelet shape change. Biochem Biophys Res Commun. 1976 Jul 12;71(1):362–370. doi: 10.1016/0006-291x(76)90291-6. [DOI] [PubMed] [Google Scholar]
  22. Le Peuch C. J., Le Peuch D. A., Katz S., Demaille J. G., Hincke M. T., Bredoux R., Enouf J., Levy-Toledano S., Caen J. Regulation of calcium accumulation and efflux from platelet vesicles. Possible role for cyclic-AMP-dependent phosphorylation and calmodulin. Biochim Biophys Acta. 1983 Jun 23;731(3):456–464. doi: 10.1016/0005-2736(83)90041-x. [DOI] [PubMed] [Google Scholar]
  23. Lee Y. C., Wolff J. Two opposing effects of calmodulin on microtubule assembly depend on the presence of microtubule-associated proteins. J Biol Chem. 1982 Jun 10;257(11):6306–6310. [PubMed] [Google Scholar]
  24. Lin Y. M., Liu Y. P., Cheung W. Y. Cyclic 3':5'-nucleotide phosphodiesterase. Purification, characterization, and active form of the protein activator from bovine brain. J Biol Chem. 1974 Aug 10;249(15):4943–4954. [PubMed] [Google Scholar]
  25. Liu Y. P., Cheung W. Y. Cyclic 3':5'-nucleotide phosphodiesterase. Ca2+ confers more helical conformation to the protein activator. J Biol Chem. 1976 Jul 25;251(14):4193–4198. [PubMed] [Google Scholar]
  26. Lynch T. J., Cheung W. Y. Human erythrocyte Ca2+-Mg2+-ATPase: mechanism of stimulation by Ca2+. Arch Biochem Biophys. 1979 Apr 15;194(1):165–170. doi: 10.1016/0003-9861(79)90606-4. [DOI] [PubMed] [Google Scholar]
  27. Maruyama K. Effects of trace amounts of Ca2+ and Mg2+ on the polymerization of actin. Biochim Biophys Acta. 1981 Jan 30;667(1):139–142. doi: 10.1016/0005-2795(81)90074-x. [DOI] [PubMed] [Google Scholar]
  28. Morrissey J. H. Silver stain for proteins in polyacrylamide gels: a modified procedure with enhanced uniform sensitivity. Anal Biochem. 1981 Nov 1;117(2):307–310. doi: 10.1016/0003-2697(81)90783-1. [DOI] [PubMed] [Google Scholar]
  29. Schliwa M. Proteins associated with cytoplasmic actin. Cell. 1981 Sep;25(3):587–590. doi: 10.1016/0092-8674(81)90166-5. [DOI] [PubMed] [Google Scholar]
  30. Smoake J. A., Song S. Y., Cheung W. Y. Cyclic 3',5'-nucleotide phosphodiesterase. Distribution and developmental changes of the enzyme and its protein activator in mammalian tissues and cells. Biochim Biophys Acta. 1974 Apr 25;341(2):402–411. doi: 10.1016/0005-2744(74)90233-2. [DOI] [PubMed] [Google Scholar]
  31. Sobue K., Kanda K., Adachi J., Kakiuchi S. Calmodulin-binding proteins that interact with actin filaments in a Ca2+-dependent flip-flop manner: survey in brain and secretory tissues. Proc Natl Acad Sci U S A. 1983 Nov;80(22):6868–6871. doi: 10.1073/pnas.80.22.6868. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Sobue K., Kanda K., Inui M., Morimoto K., Kakiuchi S. Actin polymerization induced by calspectin, a calmodulin-binding spectrin-like protein. FEBS Lett. 1982 Nov 8;148(2):221–225. doi: 10.1016/0014-5793(82)80811-9. [DOI] [PubMed] [Google Scholar]
  33. Sobue K., Muramoto Y., Fujita M., Kakiuchi S. Purification of a calmodulin-binding protein from chicken gizzard that interacts with F-actin. Proc Natl Acad Sci U S A. 1981 Sep;78(9):5652–5655. doi: 10.1073/pnas.78.9.5652. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Teo T. S., Wang J. H. Mechanism of activation of a cyclic adenosine 3':5'-monophosphate phosphodiesterase from bovine heart by calcium ions. Identification of the protein activator as a Ca2+ binding protein. J Biol Chem. 1973 Sep 10;248(17):5950–5955. [PubMed] [Google Scholar]
  35. Wallace R. W., Tallant E. A., Cheung W. Y. Assay of calmodulin by Ca2+-dependent phosphodiesterase. Methods Enzymol. 1983;102:39–47. doi: 10.1016/s0076-6879(83)02006-6. [DOI] [PubMed] [Google Scholar]
  36. Watterson D. M., Harrelson W. G., Jr, Keller P. M., Sharief F., Vanaman T. C. Structural similarities between the Ca2+-dependent regulatory proteins of 3':5'-cyclic nucleotide phosphodiesterase and actomyosin ATPase. J Biol Chem. 1976 Aug 10;251(15):4501–4513. [PubMed] [Google Scholar]
  37. Weeds A. Actin-binding proteins--regulators of cell architecture and motility. Nature. 1982 Apr 29;296(5860):811–816. doi: 10.1038/296811a0. [DOI] [PubMed] [Google Scholar]
  38. White G. C., 2nd, Levine S. N., Steiner A. N. Platelet calcium-dependent proteins: identification and localization of the calcium-dependent regulator, calmodulin, in platelets. Am J Hematol. 1981 Jun;10(4):359–367. doi: 10.1002/ajh.2830100405. [DOI] [PubMed] [Google Scholar]
  39. Yoshida K., Kimura H. Presence of calmodulin in human platelet cytoskeletons and its concentration change upon activation of platelets. Biochim Biophys Acta. 1984 Sep 28;801(2):290–297. doi: 10.1016/0304-4165(84)90079-5. [DOI] [PubMed] [Google Scholar]
  40. Young N., Gergely P., Crawford N. Platelet and leucocyte calmodulins: isolation and characterisation. Eur J Biochem. 1981 Nov;120(2):303–308. doi: 10.1111/j.1432-1033.1981.tb05704.x. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES