Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1985 Mar;82(6):1701–1705. doi: 10.1073/pnas.82.6.1701

Opacification of gamma-crystallin solutions from calf lens in relation to cold cataract formation.

R J Siezen, M R Fisch, C Slingsby, G B Benedek
PMCID: PMC397340  PMID: 3856852

Abstract

To determine the molecular mechanisms for cold cataract formation in the nucleus of the young mammalian lens, we have investigated the thermally reversible opacification of gamma-crystallin solutions isolated from calf lens. Coexistence curves (plots of opacification temperature Tc versus protein concentration) were determined for the individual gamma-crystallin fractions II, III, and IV as well as for the unfractionated gamma-crystallin mixtures isolated from the nucleus and cortex. The coexistence curve of gamma IV-crystallin is remarkably elevated above those of gamma II- and gamma III-crystallin and the gamma-crystallin mixtures. The gamma IV-crystallin fraction is the major determinant of the opacification temperature within the whole lens or isolated cytoplasm. Quasielastic light-scattering spectroscopy of gamma IV-crystallin solutions indicates that above Tc there are two populations of protein aggregates of distinctly different mean size. As the temperature is lowered towards Tc, both populations increase in size. Opacification occurs when the population of large scatterers, which is composed of less than 0.1% protein by weight, reaches an average radius of about 20,000 A.

Full text

PDF
1701

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anderson E. I., Spector A. The state of sulfhydryl groups in normal and cataractous human lens proteins. I. Nuclear region. Exp Eye Res. 1978 Apr;26(4):407–417. doi: 10.1016/0014-4835(78)90128-8. [DOI] [PubMed] [Google Scholar]
  2. Bessems G. J., Hoenders H. J., Wollensak J. Variation in proportion and molecular weight of native crystallins from single human lenses upon aging and formation of nuclear cataract. Exp Eye Res. 1983 Dec;37(6):627–637. doi: 10.1016/0014-4835(83)90137-9. [DOI] [PubMed] [Google Scholar]
  3. Bindels J. G., Bessems G. J., de Man B. M., Hoenders H. J. Comparative and age-dependent aspects of crystallin size and distribution in human, rabbit, bovine, rat, chicken, duck, frog and dogfish lenses. Comp Biochem Physiol B. 1983;76(1):47–55. doi: 10.1016/0305-0491(83)90169-4. [DOI] [PubMed] [Google Scholar]
  4. Bindels J. G., Bours J., Hoenders H. J. Age-dependent variations in the distribution of rat lens water-soluble crystallins. Size fractionation and molecular weight determination. Mech Ageing Dev. 1983 Jan;21(1):1–13. doi: 10.1016/0047-6374(83)90011-8. [DOI] [PubMed] [Google Scholar]
  5. Björk I. Studies on gamma-crystallin from calf lens. 3. Comparison of the main protein components by peptide mapping. Exp Eye Res. 1970 Jan;9(1):152–157. doi: 10.1016/s0014-4835(70)80070-7. [DOI] [PubMed] [Google Scholar]
  6. Blundell T., Lindley P., Miller L., Moss D., Slingsby C., Tickle I., Turnell B., Wistow G. The molecular structure and stability of the eye lens: x-ray analysis of gamma-crystallin II. Nature. 1981 Feb 26;289(5800):771–777. doi: 10.1038/289771a0. [DOI] [PubMed] [Google Scholar]
  7. Bours J. Isotachophoresis and immunoelectrophoresis of water-soluble and -insoluble crystallins of the ageing bovine lens. Curr Eye Res. 1984 May;3(5):691–697. doi: 10.3109/02713688409065590. [DOI] [PubMed] [Google Scholar]
  8. Bours J., Vornhagen R., Herlt M., Rink H. Immunological characterization of calf lens gamma-crystallins, separated by preparative isoelectric focusing. Curr Eye Res. 1981;1(11):651–658. doi: 10.3109/02713688109001869. [DOI] [PubMed] [Google Scholar]
  9. Chirgadze YuN, Sergeev YuV, Fomenkova N. P., Oreshin V. D. Polypeptide chain pathway in gamma-crystallin IIIb from calf lens at 3 A resolution. FEBS Lett. 1981 Aug 17;131(1):81–84. doi: 10.1016/0014-5793(81)80892-7. [DOI] [PubMed] [Google Scholar]
  10. Clark J. I., Benedek G. B. Phase diagram for cell cytoplasm from the calf lens. Biochem Biophys Res Commun. 1980 Jul 16;95(1):482–489. doi: 10.1016/0006-291x(80)90763-9. [DOI] [PubMed] [Google Scholar]
  11. Clark J. I., Delaye M., Hammer P., Mengel L. Preparation and characterization of native lens cell cytoplasm. Curr Eye Res. 1981;1(12):695–704. doi: 10.3109/02713688108998367. [DOI] [PubMed] [Google Scholar]
  12. Clark J. I., Neuringer J. R., Benedek G. B. Phase separation and lens cell age. J Gerontol. 1983 May;38(3):287–292. doi: 10.1093/geronj/38.3.287. [DOI] [PubMed] [Google Scholar]
  13. Delaye M., Clark J. I., Benedek G. B. Coexistence curves for the phase separation in the calf lens cytoplasm. Biochem Biophys Res Commun. 1981 May 29;100(2):908–914. doi: 10.1016/s0006-291x(81)80259-8. [DOI] [PubMed] [Google Scholar]
  14. Delaye M., Clark J. I., Benedek G. B. Identification of the scattering elements responsible for lens opacification in cold cataracts. Biophys J. 1982 Mar;37(3):647–656. [PMC free article] [PubMed] [Google Scholar]
  15. Delaye M., Tardieu A. Short-range order of crystallin proteins accounts for eye lens transparency. 1983 Mar 31-Apr 6Nature. 302(5907):415–417. doi: 10.1038/302415a0. [DOI] [PubMed] [Google Scholar]
  16. Garner W. H., Garner M. H., Spector A. Gamma-crystallin, a major cytoplasmic polypeptide disulfide linked to membrane proteins in human cataract. Biochem Biophys Res Commun. 1981 Jan 30;98(2):439–447. doi: 10.1016/0006-291x(81)90859-7. [DOI] [PubMed] [Google Scholar]
  17. Gulik-Krzywicki T., Tardieu A., Delaye M. Spatial reorganization of low-molecular-weight proteins during cold cataract opacification. Biochim Biophys Acta. 1984 Jul 16;800(1):28–32. doi: 10.1016/0304-4165(84)90090-4. [DOI] [PubMed] [Google Scholar]
  18. Hammer P., Benedek G. B. The effect of naturally occurring cellular constituents on phase separation and opacification in calf lens nuclear homogenates. Curr Eye Res. 1982;2(12):809–814. doi: 10.3109/02713688209020016. [DOI] [PubMed] [Google Scholar]
  19. Harding J. J., Dilley K. J. Structural proteins of the mammalian lens: a review with emphasis on changes in development, aging and cataract. Exp Eye Res. 1976 Jan;22(1):1–73. doi: 10.1016/0014-4835(76)90033-6. [DOI] [PubMed] [Google Scholar]
  20. Horwitz J., Kabasawa I., Kinoshita J. H. Conformation of gamma-crystallins of the calf lens: effects of temperature and denaturing agents. Exp Eye Res. 1977 Aug;25(2):199–208. doi: 10.1016/0014-4835(77)90132-4. [DOI] [PubMed] [Google Scholar]
  21. Lerman S., Zigman S., Forbes W. F. Properties of a cryoprotein in the ocular lens. Biochem Biophys Res Commun. 1966 Jan 4;22(1):57–61. doi: 10.1016/0006-291x(66)90602-4. [DOI] [PubMed] [Google Scholar]
  22. Moormann R. J., den Dunnen J. T., Bloemendal H., Schoenmakers J. G. Extensive intragenic sequence homology in two distinct rat lens gamma-crystallin cDNAs suggests duplications of a primordial gene. Proc Natl Acad Sci U S A. 1982 Nov;79(22):6876–6880. doi: 10.1073/pnas.79.22.6876. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Papaconstantinou J. Biochemistry of bovine lens proteins. II. The gamma-crystallins of adult bovine, calf and embryonic lenses. Biochim Biophys Acta. 1965 Aug 24;107(1):81–90. doi: 10.1016/0304-4165(65)90390-9. [DOI] [PubMed] [Google Scholar]
  24. Siezen R. J., Bindels J. G., Hoenders H. J. The interrelationship between monomeric, oligomeric and polymeric alpha-crystallin in the calf lens nucleus. Exp Eye Res. 1979 May;28(5):551–567. doi: 10.1016/0014-4835(79)90043-5. [DOI] [PubMed] [Google Scholar]
  25. Siezen R. J., Owen E. A. Interactions of lens proteins. Self-association and mixed-association studies of bovine alpha-crystallin and gamma-crystallin. Biophys Chem. 1983 Oct;18(3):181–194. doi: 10.1016/0301-4622(83)80030-1. [DOI] [PubMed] [Google Scholar]
  26. Slingsby C., Croft L. R. Developmental changes in the low molecular weight proteins of the bovine lens. Exp Eye Res. 1973 Nov 25;17(4):369–376. doi: 10.1016/0014-4835(73)90246-7. [DOI] [PubMed] [Google Scholar]
  27. Slingsby C., Croft L. R. Structural studies on calf lens gamma-crystallin fraction IV: a comparison of the cysteine-containing tryptic peptides with the corresponding amino acid sequence of gamma-crystallin fraction II. Exp Eye Res. 1978 Mar;26(3):291–304. doi: 10.1016/0014-4835(78)90076-3. [DOI] [PubMed] [Google Scholar]
  28. Slingsby C., Miller L. R. Purification and crystallization of mammalian lens gamma-crystallins. Exp Eye Res. 1983 Nov;37(5):517–530. doi: 10.1016/0014-4835(83)90028-3. [DOI] [PubMed] [Google Scholar]
  29. Wagner B. J., Fu S. C. Characterization of lens proteins. II. gamma-Crystallin of normal and cataractous rat lenses. Exp Eye Res. 1978 Mar;26(3):255–265. doi: 10.1016/0014-4835(78)90073-8. [DOI] [PubMed] [Google Scholar]
  30. Wistow G., Turnell B., Summers L., Slingsby C., Moss D., Miller L., Lindley P., Blundell T. X-ray analysis of the eye lens protein gamma-II crystallin at 1.9 A resolution. J Mol Biol. 1983 Oct 15;170(1):175–202. doi: 10.1016/s0022-2836(83)80232-0. [DOI] [PubMed] [Google Scholar]
  31. ZIGMAN S., LERMAN S. PROPERTIES OF A COLD-PRECIPITABLE PROTEIN FRACTION IN THE LENS. Exp Eye Res. 1965 Mar;4:24–30. doi: 10.1016/s0014-4835(65)80005-7. [DOI] [PubMed] [Google Scholar]
  32. van Kamp G. J., Hoenders H. J. The distribution of the soluble proteins in the calf lens. Exp Eye Res. 1973 Dec 10;17(5):417–426. doi: 10.1016/0014-4835(73)90221-2. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES