Skip to main content
Protein & Cell logoLink to Protein & Cell
. 2012 Nov 10;3(11):875–882. doi: 10.1007/s13238-012-2092-8

Proteolytic processing of SDF-1α by matrix metalloproteinase-2 impairs CXCR4 signaling and reduces neural progenitor cell migration

Hui Peng 1,2, Yumei Wu 1,2, Zhiyuan Duan 1,2,4, Pawel Ciborowski 2, Jialin C Zheng 1,2,3,
PMCID: PMC3973535  NIHMSID: NIHMS554223  PMID: 23143873

Abstract

Neural stem cells and neural progenitor cells (NPCs) exist throughout life and are mobilized to replace neurons, astrocytes and oligodendrocytes after injury. Stromal cell-derived factor 1 (SDF-1, now named CXCL12) and its receptor CXCR4, an α-chemokine receptor, are critical for NPC migration into damaged areas of the brain. Our previous studies demonstrated that immune activated and/or HIV-1-infected human monocyte-derived-macrophages (MDMs) induced a substantial increase of SDF-1 production by human astrocytes. However, matrix metalloproteinase (MMP)-2, a protein up-regulated in HIV-1-infected macrophages, is able to cleave four amino acids from the N-terminus of SDF-1, resulting in a truncated SDF-1(5-67). In this study, we investigate the diverse signaling and function induced by SDF-1α and SDF-1(5-67) in human cortical NPCs. SDF-1(5-67) was generated by incubating human recombinant SDF-1α with MMP-2 followed by protein determination via mass spectrometry, Western blotting and ELISA. SDF-1α induced time-dependent phosphorylation of extracellular signal-regulated kinases (ERK) 1/2, Akt-1, and diminished cyclic adenosine monophosphate (cAMP). In contrast, SDF-1(5-67) failed to induce these signaling. SDF-1α activation of CXCR4 induced migration of NPCs, an effect that is dependent on ERK1/2 and Akt-1 pathways; whereas SDF-1(5-67) failed to induce NPC migration. This observation provides evidence that MMP-2 may affect NPC migration through post-translational processing of SDF-1α.

Keywords: proteolysis, chemokine, neurogenesis, and migration

References

  1. Aiuti A., Webb I.J., Bleul C., Springer T., Gutierrez-Ramos J.C. The chemokine SDF-1 is a chemoattractant for human CD34+ hematopoietic progenitor cells and provides a new mechanism to explain the mobilization of CD34+ progenitors to peripheral blood. J Exp Med. 1997;185:111–120. doi: 10.1084/jem.185.1.111. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Alvarez-Buylla A., Herrera D.G., Wichterle H. The subventricular zone: source of neuronal precursors for brain repair. Prog Brain Res. 2000;127:1–11. doi: 10.1016/S0079-6123(00)27002-7. [DOI] [PubMed] [Google Scholar]
  3. Bagri A., Gurney T., He X., Zou Y.R., Littman D.R., Tessier-Lavigne M., Pleasure S.J. The chemokine SDF1 regulates migration of dentate granule cells. Development. 2002;129:4249–4260. doi: 10.1242/dev.129.18.4249. [DOI] [PubMed] [Google Scholar]
  4. Bajetto A., Bonavia R., Barbero S., Florio T., Costa A., Schettini G. Expression of chemokine receptors in the rat brain. Ann N Y Acad Sci. 1999;876:201–209. doi: 10.1111/j.1749-6632.1999.tb07640.x. [DOI] [PubMed] [Google Scholar]
  5. Belmadani A., Tran P.B., Ren D., Miller R.J. Chemokines regulate the migration of neural progenitors to sites of neuroinflammation. J Neurosci. 2006;26:3182–3191. doi: 10.1523/JNEUROSCI.0156-06.2006. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Ceradini D.J., Kulkarni A.R., Callaghan M.J., Tepper O.M., Bastidas N., Kleinman M.E., Capla J.M., Galiano R.D., Levine J.P., Gurtner G.C. Progenitor cell trafficking is regulated by hypoxic gradients through HIF-1 induction of SDF-1. Nat Med. 2004;10:858–864. doi: 10.1038/nm1075. [DOI] [PubMed] [Google Scholar]
  7. Chi L., Ke Y., Luo C., Li B., Gozal D., Kalyanaraman B., Liu R. Motor neuron degeneration promotes neural progenitor cell proliferation, migration, and neurogenesis in the spinal cords of amyotrophic lateral sclerosis mice. Stem Cells. 2006;24:34–43. doi: 10.1634/stemcells.2005-0076. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Conant K., McArthur J.C., Griffin D.E., Sjulson L., Wahl L.M., Irani D.N. Cerebrospinal fluid levels of MMP-2, 7, and 9 are elevated in association with human immunodeficiency virus dementia. Ann Neurol. 1999;46:391–398. doi: 10.1002/1531-8249(199909)46:3<391::AID-ANA15>3.0.CO;2-0. [DOI] [PubMed] [Google Scholar]
  9. Crump M.P., Gong J.H., Loetscher P., Rajarathnam K., Amara A., Arenzana-Seisdedos F., Virelizier J.L., Baggiolini M., Sykes B.D., Clark-Lewis I. Solution structure and basis for functional activity of stromal cell-derived factor-1; dissociation of CXCR4 activation from binding and inhibition of HIV-1. EMBO J. 1997;16:6996–7007. doi: 10.1093/emboj/16.23.6996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Delgado M.B., Clark-Lewis I., Loetscher P., Langen H., Thelen M., Baggiolini M., Wolf M. Rapid inactivation of stromal cell-derived factor-1 by cathepsin G associated with lymphocytes. Eur J Immunol. 2001;31:699–707. doi: 10.1002/1521-4141(200103)31:3<699::AID-IMMU699>3.0.CO;2-6. [DOI] [PubMed] [Google Scholar]
  11. Gage F.H. Mammalian neural stem cells. Science. 2000;287:1433–1438. doi: 10.1126/science.287.5457.1433. [DOI] [PubMed] [Google Scholar]
  12. Gage F.H. Neurogenesis in the adult brain. J Neurosci. 2002;22:612–613. doi: 10.1523/JNEUROSCI.22-03-00612.2002. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Hatten M.E. Central nervous system neuronal migration. Annu Rev Neurosci. 1999;22:511–539. doi: 10.1146/annurev.neuro.22.1.511. [DOI] [PubMed] [Google Scholar]
  14. Imitola J., Raddassi K., Park K.I., Mueller F.J., Nieto M., Teng Y.D., Frenkel D., Li J., Sidman R.L., Walsh C.A., et al. Directed migration of neural stem cells to sites of CNS injury by the stromal cell-derived factor 1alpha/CXC chemokine receptor 4 pathway. Proc Natl Acad Sci U S A. 2004;101:18117–18122. doi: 10.1073/pnas.0408258102. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Johnston J.B., Jiang Y., van Marle G., Mayne M.B., Ni W., Holden J., McArthur J.C., Power C. Lentivirus infection in the brain induces matrix metalloproteinase expression: role of envelope diversity. J Virol. 2000;74:7211–7220. doi: 10.1128/JVI.74.16.7211-7220.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Ke Y., Chi L., Xu R., Luo C., Gozal D., Liu R. Early response of endogenous adult neural progenitor cells to acute spinal cord injury in mice. Stem Cells. 2006;24:1011–1019. doi: 10.1634/stemcells.2005-0249. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Klein R.S., Rubin J.B., Gibson H.D., DeHaan E.N., Alvarez-Hernandez X., Segal R.A., Luster A.D. SDF-1 alpha induces chemotaxis and enhances Sonic hedgehog-induced proliferation of cerebellar granule cells. Development. 2001;128:1971–1981. doi: 10.1242/dev.128.11.1971. [DOI] [PubMed] [Google Scholar]
  18. Krathwohl M.D., Kaiser J.L. HIV-1 promotes quiescence in human neural progenitor cells. J Infect Dis. 2004;190:216–226. doi: 10.1086/422008. [DOI] [PubMed] [Google Scholar]
  19. Langford D., Sanders V.J., Mallory M., Kaul M., Masliah E. Expression of stromal cell-derived factor 1alpha protein in HIV encephalitis. J Neuroimmunol. 2002;127:115–126. doi: 10.1016/S0165-5728(02)00068-1. [DOI] [PubMed] [Google Scholar]
  20. Lazarini F., Tham T.N., Casanova P., Arenzana-Seisdedos F., Dubois-Dalcq M. Role of the alpha-chemokine stromal cell-derived factor (SDF-1) in the developing and mature central nervous system. Glia. 2003;42:139–148. doi: 10.1002/glia.10139. [DOI] [PubMed] [Google Scholar]
  21. Lu M., Grove E.A., Miller R.J. Abnormal development of the hippocampal dentate gyrus in mice lacking the CXCR4 chemokine receptor. Proc Natl Acad Sci U S A. 2002;99:7090–7095. doi: 10.1073/pnas.092013799. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Ma Q., Jones D., Borghesani P.R., Segal R.A., Nagasawa T., Kishimoto T., Bronson R.T., Springer T.A. Impaired B-lymphopoiesis, myelopoiesis, and derailed cerebellar neuron migration in CXCR4 and SDF 1 deficient mice. Proc Natl Acad Sci U S A. 1998;95:9448–9453. doi: 10.1073/pnas.95.16.9448. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. McQuibban G.A., Butler G.S., Gong J.H., Bendall L., Power C., Clark-Lewis I., Overall C.M. Matrix metalloproteinase activity inactivates the CXC chemokine stromal cell-derived factor-1. J Biol Chem. 2001;276:43503–43508. doi: 10.1074/jbc.M107736200. [DOI] [PubMed] [Google Scholar]
  24. Nagasawa T., Hirota S., Tachibana K., Takakura N., Nishikawa S., Kitamura Y., Yoshida N., Kikutani H., Kishimoto T. Defects of B-cell lymphopoiesis and bone-marrow myelopoiesis in mice lacking the CXC chemokine PBSF/SDF-1. Nature. 1996;382:635–638. doi: 10.1038/382635a0. [DOI] [PubMed] [Google Scholar]
  25. Peng H., Erdmann N., Whitney N., Dou H., Gorantla S., Gendelman H.E., Ghorpade A., Zheng J. HIV-1-infected and/or immune activated macrophages regulate astrocyte SDF-1 production through IL-1beta. Glia. 2006;54:619–629. doi: 10.1002/glia.20409. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Peng H., Huang Y., Duan Z., Erdmann N., Xu D., Herek S., Zheng J. Cellular IAP1 regulates TRAIL-induced apoptosis in human fetal cortical neural progenitor cells. J Neurosci Res. 2005;82:295–305. doi: 10.1002/jnr.20629. [DOI] [PubMed] [Google Scholar]
  27. Peng H., Huang Y., Rose J., Erichsen D., Herek S., Fujii N., Tamamura H., Zheng J. Stromal cell-derived factor 1 mediated CXCR4 signaling in rat and human cortical neural progenitor cells. Journal of Neuroscience Research. 2004;76:35–50. doi: 10.1002/jnr.20045. [DOI] [PubMed] [Google Scholar]
  28. Peng H., Kolb R., Kennedy J.E., Zheng J. Differential expression of CXCL12 and CXCR4 during human fetal neural progenitor cell differentiation. J Neuroimmune Pharmacol. 2007;2:251–258. doi: 10.1007/s11481-007-9081-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Peng H., Whitney N., Wu Y., Tian C., Dou H., Zhou Y., Zheng J. HIV-1-infected and/or immune-activated macrophage-secreted TNF-alpha affects human fetal cortical neural progenitor cell proliferation and differentiation. Glia. 2008;56:903–916. doi: 10.1002/glia.20665. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Proost P., Struyf S., Schols D., Durinx C., Wuyts A., Lenaerts J.P., De Clercq E., De Meester I., Van Damme J. Processing by CD26/dipeptidyl-peptidase IV reduces the chemotactic and anti-HIV-1 activity of stromal-cell-derived factor-1alpha. FEBS Lett. 1998;432:73–76. doi: 10.1016/S0014-5793(98)00830-8. [DOI] [PubMed] [Google Scholar]
  31. Reiss K., Mentlein R., Sievers J., Hartmann D. Stromal cell-derived factor 1 is secreted by meningeal cells and acts as chemotactic factor on neuronal stem cells of the cerebellar external granular layer. Neuroscience. 2002;115:295–305. doi: 10.1016/S0306-4522(02)00307-X. [DOI] [PubMed] [Google Scholar]
  32. Rostasy K., Egles C., Chauhan A., Kneissl M., Bahrani P., Yiannoutsos C., Hunter D.D., Nath A., Hedreen J.C., Navia B.A. SDF-1alpha is expressed in astrocytes and neurons in the AIDS dementia complex: an in vivo and in vitro study. J Neuropathol Exp Neurol. 2003;62:617–626. doi: 10.1093/jnen/62.6.617. [DOI] [PubMed] [Google Scholar]
  33. Sadir R., Imberty A., Baleux F., Lortat-Jacob H. Heparan sulfate/heparin oligosaccharides protect stromal cell-derived factor-1 (SDF-1)/CXCL12 against proteolysis induced by CD26/dipeptidyl peptidase IV. J Biol Chem. 2004;279:43854–43860. doi: 10.1074/jbc.M405392200. [DOI] [PubMed] [Google Scholar]
  34. Shioda T., Kato H., Ohnishi Y., Tashiro K., Ikegawa M., Nakayama E.E., Hu H., Kato A., Sakai Y., Liu H., et al. Anti-HIV-1 and chemotactic activities of human stromal cell-derived factor 1alpha (SDF-1alpha) and SDF-1beta are abolished by CD26/dipeptidyl peptidase IV-mediated cleavage. Proc Natl Acad Sci U S A. 1998;95:6331–6336. doi: 10.1073/pnas.95.11.6331. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Sun L., Lee J., Fine H.A. Neuronally expressed stem cell factor induces neural stem cell migration to areas of brain injury. J Clin Invest. 2004;113:1364–1374. doi: 10.1172/JCI200420001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Takeuchi H., Natsume A., Wakabayashi T., Aoshima C., Shimato S., Ito M., Ishii J., Maeda Y., Hara M., Kim S.U., et al. Intravenously transplanted human neural stem cells migrate to the injured spinal cord in adult mice in an SDF-1- and HGF-dependent manner. Neurosci Lett. 2007;426:69–74. doi: 10.1016/j.neulet.2007.08.048. [DOI] [PubMed] [Google Scholar]
  37. Tran P.B., Ren D., Veldhouse T.J., Miller R.J. Chemokine receptors are expressed widely by embryonic and adult neural progenitor cells. J Neurosci Res. 2004;76:20–34. doi: 10.1002/jnr.20001. [DOI] [PubMed] [Google Scholar]
  38. Valenzuela-Fernandez A., Planchenault T., Baleux F., Staropoli I., Le-Barillec K., Leduc D., Delaunay T., Lazarini F., Virelizier J.L., Chignard M., et al. Leukocyte Elastase Negatively Regulates Stromal Cell-derived Factor-1 (SDF-1)/CXCR4 Binding and Functions by Amino-terminal Processing of SDF-1 and CXCR4. J Biol Chem. 2002;277:15677–15689. doi: 10.1074/jbc.M111388200. [DOI] [PubMed] [Google Scholar]
  39. Vergote D., Butler G.S., Ooms M., Cox J.H., Silva C., Hollenberg M.D., Jhamandas J.H., Overall C.M., Power C. Proteolytic processing of SDF-1alpha reveals a change in receptor specificity mediating HIV-associated neurodegeneration. Proc Natl Acad Sci U S A. 2006;103:19182–19187. doi: 10.1073/pnas.0604678103. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Weiss S., Reynolds B.A., Vescovi A.L., Morshead C., Craig C.G., van der Kooy D. Is there a neural stem cell in the mammalian forebrain? Trends Neurosci. 1996;19:387–393. doi: 10.1016/S0166-2236(96)10035-7. [DOI] [PubMed] [Google Scholar]
  41. Wu Y., Chen Q., Peng H., Dou H., Zhou Y., Huang Y., Zheng J. Directed migration of human nueral progenitor cells to interleukin-1β is promoted by chemokines stromal cell-derived factor-1 and monocyte chemotactic factor-1 in mouse brains. Translational Neurodegeneration. 2012;31:15. doi: 10.1186/2047-9158-1-15. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Zhang K., McQuibban G.A., Silva C., Butler G.S., Johnston J.B., Holden J., Clark-Lewis I., Overall C.M., Power C. HIV-induced metalloproteinase processing of the chemokine stromal cell derived factor-1 causes neurodegeneration. Nat Neurosci. 2003;6:1064–1071. doi: 10.1038/nn1127. [DOI] [PubMed] [Google Scholar]
  43. Zheng J., Thylin M., Ghorpade A., Xiong H., Persidsky Y., Cotter R., Niemann D., Che M., Zeng Y., Gelbard H., et al. Intracellular CXCR4 signaling, neuronal apoptosis and neuropathogenic mechanisms of HIV-1-associated dementia. J Neuroimmunol. 1999;98:185–200. doi: 10.1016/S0165-5728(99)00049-1. [DOI] [PubMed] [Google Scholar]
  44. Zhu, B., Xu, D., Deng, X., Chen, Q., Huang, Y., Peng, H., Li, Y., Jia, B., Thoreson, W.B., Ding, W., et al. (2012). CXCL12 Enhances Human Neural Progenitor Cell Survival through a CXCR7- and CXCR4-mediated Endocytotic Signaling Pathway. Stem Cells. (In Press). [DOI] [PMC free article] [PubMed]
  45. Zou Y.R., Kottmann A.H., Kuroda M., Taniuchi I., Littman D.R. Function of the chemokine receptor CXCR4 in haematopoiesis and in cerebellar development. Nature. 1998;393:595–599. doi: 10.1038/31269. [DOI] [PubMed] [Google Scholar]

Articles from Protein & Cell are provided here courtesy of Oxford University Press

RESOURCES