Abstract
In view of finding a new gamma-aminobutyric acid (GABA) receptor ligand we synthesized an arylaminopyridazine derivative of GABA, SR 95103 [2-(carboxy-3'-propyl)-3-amino-4-methyl-6-phenylpyridazinium chloride]. SR 95103 displaced [3H]GABA from rat brain membranes with an apparent Ki of 2.2 microM and a Hill number near 1.0. SR 95103 (1-100 microM) antagonized the GABA-mediated enhancement of [3H]diazepam binding in a concentration-dependent manner without affecting [3H]diazepam binding per se. SR 95103 competitively antagonized GABA-induced membrane depolarization in rat spinal ganglia. In all these experiments, the potency of SR 95103 was close to that of bicuculline. SR 95103 (100 microM) did not interact with a variety of central receptors--in particular the GABAB, the strychnine, and the glutamate receptors--did not inhibit Na+-dependent synaptosomal GABA uptake, and did not affect GABA-transaminase and glutamic acid decarboxylase activities. Intraperitoneally administered SR 95103 elicited clonicotonic seizures in mice (ED50 = 180 mg/kg). On the basis of these results it is postulated that St 95103 is a competitive antagonist of GABA at the GABAA receptor site. In addition to being an interesting lead structure for the search of GABA ligands, SR 95103 could also be a useful tool to investigate GABA receptor subtypes because it is freely soluble in water and chemically stable.
Full text
PDF




Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Andrews P. R., Johnston G. A. GABA agonists and antagonists. Biochem Pharmacol. 1979 Sep 15;28(18):2697–2702. doi: 10.1016/0006-2952(79)90549-5. [DOI] [PubMed] [Google Scholar]
- Arnt J., Krogsgaard-Larsen P. GABA agonists and potential antagonists related to muscimol. Brain Res. 1979 Nov 16;177(2):395–400. doi: 10.1016/0006-8993(79)90793-5. [DOI] [PubMed] [Google Scholar]
- Beart P. M., Johnston G. A., Uhr M. L. Competitive inhibition of GABA uptake in rat brain slices by some GABA analogues of restricted conformation. J Neurochem. 1972 Aug;19(8):1855–1861. doi: 10.1111/j.1471-4159.1972.tb01474.x. [DOI] [PubMed] [Google Scholar]
- Biziere K., Thompson H., Coyle J. T. Characterization of specific, high-affinity binding sites for L-[3H]glutamic acid in rat brain membranes. Brain Res. 1980 Feb 10;183(2):421–433. doi: 10.1016/0006-8993(80)90476-x. [DOI] [PubMed] [Google Scholar]
- Bowery N. G., Hill D. R., Hudson A. L. Characteristics of GABAB receptor binding sites on rat whole brain synaptic membranes. Br J Pharmacol. 1983 Jan;78(1):191–206. doi: 10.1111/j.1476-5381.1983.tb09380.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Creese I., Snyder S. H. 3H-Spiroperidol labels serotonin receptors in rat cerebral cortex and hippocampus. Eur J Pharmacol. 1978 May 15;49(2):201–202. doi: 10.1016/0014-2999(78)90080-8. [DOI] [PubMed] [Google Scholar]
- Desarmenien M., Feltz P., Headley P. M. Does glial uptake affect GABA responses? AN intracellular study on rat dorsal root ganglion neurones in vitro. J Physiol. 1980 Oct;307:163–182. doi: 10.1113/jphysiol.1980.sp013429. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Desarmenien M., Feltz P., Headley P. M., Santangelo F. SL 75 102 as a gama-aminobutyric acid agonist: experiments on dorsal root ganglion neurones in vitro. Br J Pharmacol. 1981 Feb;72(2):355–364. doi: 10.1111/j.1476-5381.1981.tb09135.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Desarmenien M., Santangelo F., Loeffler J. P., Feltz P. Comparative study of GABA-mediated depolarizations of lumbar A delta and C primary afferent neurones of the rat. Exp Brain Res. 1984;54(3):521–528. doi: 10.1007/BF00235477. [DOI] [PubMed] [Google Scholar]
- Désarmenien M., Feltz P., Occhipinti G., Santangelo F., Schlichter R. Coexistence of GABAA and GABAB receptors on A delta and C primary afferents. Br J Pharmacol. 1984 Feb;81(2):327–333. doi: 10.1111/j.1476-5381.1984.tb10082.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Enna S. J., Snyder S. H. Properties of gamma-aminobutyric acid (GABA) receptor binding in rat brain synaptic membrane fractions. Brain Res. 1975 Dec 12;100(1):81–97. doi: 10.1016/0006-8993(75)90243-7. [DOI] [PubMed] [Google Scholar]
- Fujimoto M., Okabayashi T. Effect of picrotoxin on benzodiazepine receptors and GABA receptors with reference to the effect of C1- ion. Life Sci. 1981 Feb 23;28(8):895–901. doi: 10.1016/0024-3205(81)90051-5. [DOI] [PubMed] [Google Scholar]
- Gallagher J. P., Nakamura J., Shinnick-Gallagher P. Effects of glial uptake and desensitization on the activity of gamma-aminobutyric acid (GABA) and its analogs at the cat dorsal root ganglion. J Pharmacol Exp Ther. 1983 Sep;226(3):876–884. [PubMed] [Google Scholar]
- Galli A., Zilletti L., Scotton M., Adembri G., Giotti A. A study on structural requirements of GABA-analogues for interaction with GABA receptor sites in rat brain. Pharmacol Res Commun. 1980 Mar;12(3):267–272. doi: 10.1016/s0031-6989(80)80011-7. [DOI] [PubMed] [Google Scholar]
- Gähwiler B. H., Maurer R., Wüthrich H. J. Pitrazepin, a novel GABAA antagonist. Neurosci Lett. 1984 Apr 6;45(3):311–316. doi: 10.1016/0304-3940(84)90244-1. [DOI] [PubMed] [Google Scholar]
- Hattori K., Akaike N., Oomura Y., Kuraoka S. Internal perfusion studies demonstrating GABA-induced chloride responses in frog primary afferent neurons. Am J Physiol. 1984 Mar;246(3 Pt 1):C259–C265. doi: 10.1152/ajpcell.1984.246.3.C259. [DOI] [PubMed] [Google Scholar]
- Hill D. R., Bowery N. G. 3H-baclofen and 3H-GABA bind to bicuculline-insensitive GABA B sites in rat brain. Nature. 1981 Mar 12;290(5802):149–152. doi: 10.1038/290149a0. [DOI] [PubMed] [Google Scholar]
- Hunt P., Clements-Jewery S. A steroid derivative, R 5135, antagonizes the GABA/benzodiazepine receptor interaction. Neuropharmacology. 1981 Apr;20(4):357–361. doi: 10.1016/0028-3908(81)90009-5. [DOI] [PubMed] [Google Scholar]
- Jung M. J., Lippert B., Metcalf B. W., Schechter P. J., Böhlen P., Sjoerdsma A. The effect of 4-amino hex-5-ynoic acid (gamma-acetylenic GABA, gammma-ethynyl GABA) a catalytic inhibitor of GABA transaminase, on brain GABA metabolism in vivo. J Neurochem. 1977 Apr;28(4):717–723. doi: 10.1111/j.1471-4159.1977.tb10618.x. [DOI] [PubMed] [Google Scholar]
- Karobath M., Sperk G. Stimulation of benzodiazepine receptor binding by gamma-aminobutyric acid. Proc Natl Acad Sci U S A. 1979 Feb;76(2):1004–1006. doi: 10.1073/pnas.76.2.1004. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Korn S. J., Martin M. W., Harden T. K. N-Ethylmaleimide-induced alteration in the interaction of agonists with muscarinic cholinergic receptors of rat brain. J Pharmacol Exp Ther. 1983 Jan;224(1):118–126. [PubMed] [Google Scholar]
- Krogsgaard-Larsen P., Hjeds H., Curtis D. R., Leah J. D., Peet M. J. Glycine antagonists structurally related to muscimol, THIP, or isoguvacine. J Neurochem. 1982 Nov;39(5):1319–1324. doi: 10.1111/j.1471-4159.1982.tb12573.x. [DOI] [PubMed] [Google Scholar]
- Krogsgaard-Larsen P., Johnston G. A., Lodge D., Curtis D. R. A new class of GABA agonist. Nature. 1977 Jul 7;268(5615):53–55. doi: 10.1038/268053a0. [DOI] [PubMed] [Google Scholar]
- Krogsgaard-Larsen P., Johnston G. A. Structure-activity studies on the inhibition of GABA binding to rat brain membranes by muscimol and related compounds. J Neurochem. 1978 Jun;30(6):1377–1382. doi: 10.1111/j.1471-4159.1978.tb10469.x. [DOI] [PubMed] [Google Scholar]
- Krogsgaard-Larsen P. gamma-Aminobutyric acid agonists, antagonists, and uptake inhibitors. Design and therapeutic aspects. J Med Chem. 1981 Dec;24(12):1377–1383. doi: 10.1021/jm00144a001. [DOI] [PubMed] [Google Scholar]
- Lloyd K. G., Arbilla S., Beaumont K., Briley M., De Montis G., Scatton B., Langer S. Z., Bartholini G. gamma-Aminobutyric acid (GABA) receptor stimulation. II. Specificity of progabide (SL 76002) and SL 75102 for the GABA receptor. J Pharmacol Exp Ther. 1982 Mar;220(3):672–677. [PubMed] [Google Scholar]
- Nelson D. L., Herbet A., Bourgoin S., Glowinski J., Hamon M. Characteristics of central 5-HT receptors and their adaptive changes following intracerebral 5,7-dihydroxytryptamine administration in the rat. Mol Pharmacol. 1978 Nov;14(6):983–995. [PubMed] [Google Scholar]
- Nicholson C., Phillips J. M. Ion diffusion modified by tortuosity and volume fraction in the extracellular microenvironment of the rat cerebellum. J Physiol. 1981 Dec;321:225–257. doi: 10.1113/jphysiol.1981.sp013981. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nicholson S. H., Suckling C. J., Iversen L. L. GABA analogues: conformational analysis of effects on [3H]GABA binding to postsynaptic receptors in human cerebellum. J Neurochem. 1979 Jan;32(1):249–252. doi: 10.1111/j.1471-4159.1979.tb04539.x. [DOI] [PubMed] [Google Scholar]
- Ramsay P. B., Krigman M. R., Morell P. Developmental studies of the uptake of choline, GABA and dopamine by crude synaptosomal preparations after in vivo or in vitro lead treatment. Brain Res. 1980 Apr 14;187(2):383–402. doi: 10.1016/0006-8993(80)90210-3. [DOI] [PubMed] [Google Scholar]
- Squires R. F., Brastrup C. Benzodiazepine receptors in rat brain. Nature. 1977 Apr 21;266(5604):732–734. doi: 10.1038/266732a0. [DOI] [PubMed] [Google Scholar]
- Tappaz M. L., Brownstein M. J., Palkovits M. Distribution of glutamate decarboxylase in discrete brain nuclei. Brain Res. 1976 May 28;108(2):371–379. doi: 10.1016/0006-8993(76)90193-1. [DOI] [PubMed] [Google Scholar]
- U'Prichard D. C., Greenberg D. A., Snyder S. H. Binding characteristics of a radiolabeled agonist and antagonist at central nervous system alpha noradrenergic receptors. Mol Pharmacol. 1977 May;13(3):454–473. [PubMed] [Google Scholar]
- Young A. B., Snyder S. H. Strychnine binding associated with glycine receptors of the central nervous system. Proc Natl Acad Sci U S A. 1973 Oct;70(10):2832–2836. doi: 10.1073/pnas.70.10.2832. [DOI] [PMC free article] [PubMed] [Google Scholar]