Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1985 Apr;82(7):2039–2043. doi: 10.1073/pnas.82.7.2039

1H NMR studies of electron exchange rate of Pseudomonas aeruginosa azurin.

K Uğurbil, S Mitra
PMCID: PMC397487  PMID: 2984677

Abstract

T1 values of the His-35 C-2 proton resonance of reduced Pseudomonas aeruginosa azurin were determined at 25 degrees C and pH values 4.5, 7.3, and 9.0 in the presence of different fractional amounts of oxidized azurin. The C-2 proton of His-35 undergoes very rapid spin relaxation in oxidized azurin because of its close proximity to the paramagnetic copper. In the presence of oxidized protein, the T1 values of this proton in reduced azurin depend on the lifetime of the reduced protein. From the T1 data, the electron self-exchange rate constant for azurin was calculated to be 1.4 X 10(4) M-1 X s-1, 4.3 X 10(3) M-1 X s-1, and 6.0 X 10(3) M-1 X s-1 at pH values 4.5, 7.3, and 9, respectively. At pH 7.3, the C-2 proton of His-35 is in slow exchange between the imidazole and imidazolium forms and gives rise to two separate resonances at 9.39 and 8.00 ppm. By using these two resonances, the electron self-exchange rate constants were determined separately for the two species of azurin for which the His-35 residue is in the imidazole or the imidazolium forms; results showed that both species participate in self-exchange of electrons with equal efficiency.

Full text

PDF
2039

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adman E. T., Canters G. W., Hill H. A., Kitchen N. A. The effect of pH and temperature on the structure of the active site of azurin from Pseudomonas aeruginosa. FEBS Lett. 1982 Jul 5;143(2):287–292. doi: 10.1016/0014-5793(82)80118-x. [DOI] [PubMed] [Google Scholar]
  2. Adman E. T., Stenkamp R. E., Sieker L. C., Jensen L. H. A crystallographic model for azurin a 3 A resolution. J Mol Biol. 1978 Jul 25;123(1):35–47. doi: 10.1016/0022-2836(78)90375-3. [DOI] [PubMed] [Google Scholar]
  3. Antonini E., Finazzi-Agrò A., Avigliano A., Guerrieri P., Rotilio G., Mondovì B. Kinetics of electron transfer between azurin and cytochrome 551 from Pseudomonas. J Biol Chem. 1970 Sep 25;245(18):4847–4849. [PubMed] [Google Scholar]
  4. Blaszak J. A., Ulrich E. L., Markley J. L., McMillin D. R. High-resolution proton nuclear magnetic resonance studies of the nickel(II) derivative of azurin. Biochemistry. 1982 Nov 23;21(24):6253–6258. doi: 10.1021/bi00267a033. [DOI] [PubMed] [Google Scholar]
  5. Brill A. S., Bryce G. F., Maria H. J. Optical and magnetic properties of Pseudomonas azurins. Biochim Biophys Acta. 1968 Feb 19;154(2):342–351. doi: 10.1016/0005-2795(68)90048-2. [DOI] [PubMed] [Google Scholar]
  6. Corin A. F., Bersohn R., Cole P. E. pH dependence of the reduction-oxidation reaction of azurin with cytochrome c-551: role of histidine-35 of azurin in electron transfer. Biochemistry. 1983 Apr 12;22(8):2032–2038. doi: 10.1021/bi00277a046. [DOI] [PubMed] [Google Scholar]
  7. Cummins D., Gray H. B. Electron-transfer protein reactivities. Kinetic studies of the oxidation of horse heart cytochrome c, Chromatium vinosum high potential iron-sulfur protein, Pseudomonas aeruginosa azurin, bean plastocyanin, and Rhus vernicifera stellacyanin by pentaamminepyridineruthenium(III). J Am Chem Soc. 1977 Jul 20;99(15):5158–5167. doi: 10.1021/ja00457a042. [DOI] [PubMed] [Google Scholar]
  8. Farver O., Blatt Y., Pecht I. Resolution of two distinct electron transfer sites on azurin. Biochemistry. 1982 Jul 20;21(15):3556–3561. doi: 10.1021/bi00258a005. [DOI] [PubMed] [Google Scholar]
  9. Goldberg M., Pecht I. Kinetics and equilibria of the electron transfer between azurin and the hexacyanoiron (II/III) couple. Biochemistry. 1976 Sep 21;15(19):4197–4208. doi: 10.1021/bi00664a011. [DOI] [PubMed] [Google Scholar]
  10. Hill H. A., Leer J. C., Smith B. E., Storm C. B. A possible approach to the investigation of the structures of copper proteins: H N.M.R. spectra of azurin. Biochem Biophys Res Commun. 1976 May 17;70(2):331–338. doi: 10.1016/0006-291x(76)91050-0. [DOI] [PubMed] [Google Scholar]
  11. Hill H. A., Smith B. E. Characteristics of azurin from Pseudomonas aeruginosa via 270-MHz 1H nuclear magnetic resonance spectroscopy. J Inorg Biochem. 1979 Oct;11(2):79–93. doi: 10.1016/s0162-0134(00)80174-9. [DOI] [PubMed] [Google Scholar]
  12. McArdle J. V., Coyle C. L., Cray H. B., Yoneda G. S., Holwerda R. A. Kinetics studies of the oxidation of blue copper proteins by tris(1,10-phenanthroline)cobalt(III) ions. J Am Chem Soc. 1977 Apr 13;99(8):2483–2489. doi: 10.1021/ja00450a014. [DOI] [PubMed] [Google Scholar]
  13. Midelfort C. F., Gupta R. K., Rose I. A. Fructose 1,6-bisphosphate: isomeric composition, kinetics, and substrate specificity for the aldolases. Biochemistry. 1976 May 18;15(10):2178–2185. doi: 10.1021/bi00655a023. [DOI] [PubMed] [Google Scholar]
  14. Mitra S., Bersohn R. Proton NMR of the histidines of azurin from Alcaligenes faecalis: linkage of histidine-35 with redox kinetics. Proc Natl Acad Sci U S A. 1982 Nov;79(22):6807–6811. doi: 10.1073/pnas.79.22.6807. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Rosen P., Pecht I. Conformational equilibria accompanying the electron transfer between cytochrome c (P551) and azurin from Pseudomonas aeruginosa. Biochemistry. 1976 Feb 24;15(4):775–786. doi: 10.1021/bi00649a008. [DOI] [PubMed] [Google Scholar]
  16. Rosen P., Segal M., Pecht I. Electron transfer between azurin from Alcaligenes faecalis and cytochrome c551 from Pseudomonas aeruginosa. Eur J Biochem. 1981 Nov;120(2):339–344. doi: 10.1111/j.1432-1033.1981.tb05709.x. [DOI] [PubMed] [Google Scholar]
  17. Ugurbil K., Bersohn R. Nuclear magnetic resonance study of exchangeable and nonexchangeable protons in azurin from Pseudomonas aeruginosa. Biochemistry. 1977 Jun 28;16(13):3016–3023. doi: 10.1021/bi00632a032. [DOI] [PubMed] [Google Scholar]
  18. Ugurbil K., Norton R. S., Allerhand A., Bersohn R. Studies of individual carbon sites of azurin from Pseudomonas aeruginosa by natural-abundance carbon-13 nuclear magnetic resonance spectroscopy. Biochemistry. 1977 Mar 8;16(5):886–894. doi: 10.1021/bi00624a012. [DOI] [PubMed] [Google Scholar]
  19. Wherland S., Pecht I. Protein-protein electron transfer. A Marcus theory analysis of reactions between c type cytochromes and blue copper proteins. Biochemistry. 1978 Jun 27;17(13):2585–2591. doi: 10.1021/bi00606a020. [DOI] [PubMed] [Google Scholar]
  20. Wilson M. T., Greenwood C., Brunori M., Antonini E. Electron transfer between azurin and cytochrone c-551 from Pseudomonas aeruginosa. Biochem J. 1975 Mar;145(3):449–457. doi: 10.1042/bj1450449. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES