Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1985 Apr;82(7):2101–2105. doi: 10.1073/pnas.82.7.2101

Prenatal expression of a lethal genetic defect in carbohydrate metabolism in mice.

F L Tyson, F B Essien
PMCID: PMC397500  PMID: 3856887

Abstract

Mouse fetuses homozygous for the lethal cab (cardiac abnormal) mutation are characterized by pleiotropic effects that lead to immediate postnatal death. Mutant fetuses have only 4% of the normal amount of hepatic glycogen and 39% of the normal cardiac glycogen reserve, coupled with lower specific activities of glycogen synthase and phosphorylase. Analysis with the periodic acid-Schiff reagent histochemical stain demonstrated that cab homozygotes also have reduced amounts of structural polysaccharides. One of the most distinctive mutant phenotypic traits is severe prenatal hypoglycemia, with average (+/-SEM) plasma glucose concentrations of 0.35 +/- 0.14 mM in late fetuses compared to 3.47 +/- 0.69 mM in normal littermates. Compromise of glucose transport from dam to fetus or altered cellular glucose utilization was considered as a possible basis for the low extracellular and intracellular (hepatic) levels of glucose in mutants. Transport of the glucose analogue alpha-methyl[14C]glucoside by the placenta of cab homozygotes is normal. However, metabolism of [14C]glucose by mutant cells yields only 20% of the normal amount of 14CO2. This reduced efficiency of glucose metabolism is correlated with lower ATP concentrations in mutant organs. Aberrant glucose utilization may account for the pleiotropic features of the cab syndrome.

Full text

PDF
2101

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Battaglia F. C., Meschia G. Principal substrates of fetal metabolism. Physiol Rev. 1978 Apr;58(2):499–527. doi: 10.1152/physrev.1978.58.2.499. [DOI] [PubMed] [Google Scholar]
  2. Donnelly M., Scheffler I. E. Energy metabolism in respiration-deficient and wild type Chinese hamster fibroblasts in culture. J Cell Physiol. 1976 Sep;89(1):39–51. doi: 10.1002/jcp.1040890105. [DOI] [PubMed] [Google Scholar]
  3. Eleff S., Kennaway N. G., Buist N. R., Darley-Usmar V. M., Capaldi R. A., Bank W. J., Chance B. 31P NMR study of improvement in oxidative phosphorylation by vitamins K3 and C in a patient with a defect in electron transport at complex III in skeletal muscle. Proc Natl Acad Sci U S A. 1984 Jun;81(11):3529–3533. doi: 10.1073/pnas.81.11.3529. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Erickson R. P., Gluecksohn-Waelsch S., Cori C. F. Glucose-6-phosphatase deficiency caused by radiation-induced alleles at the albino locus in the mouse. Proc Natl Acad Sci U S A. 1968 Feb;59(2):437–444. doi: 10.1073/pnas.59.2.437. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Essien F. B. A lethal mutation (cab) affecting heart function in the mouse. Genet Res. 1979 Feb;33(1):57–59. doi: 10.1017/s0016672300018164. [DOI] [PubMed] [Google Scholar]
  6. HYVARINEN A., NIKKILA E. A. Specific determination of blood glucose with o-toluidine. Clin Chim Acta. 1962 Jan;7:140–143. doi: 10.1016/0009-8981(62)90133-x. [DOI] [PubMed] [Google Scholar]
  7. Hommes F. A., Kraan G. P., Berger R. The regulation of ATP synthesis in fetal rat liver. Enzyme. 1973;15(1):351–360. [PubMed] [Google Scholar]
  8. Huijing F. Glycogen metabolism and glycogen-storage diseases. Physiol Rev. 1975 Oct;55(4):609–658. doi: 10.1152/physrev.1975.55.4.609. [DOI] [PubMed] [Google Scholar]
  9. KORNFELD R., BROWN D. H. The activity of some enzymes of glycogen metabolism in fetal and neonatal guinea pig liver. J Biol Chem. 1963 May;238:1604–1607. [PubMed] [Google Scholar]
  10. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  11. MONTGOMERY R. Determination glycogen. Arch Biochem Biophys. 1957 Apr;67(2):378–386. doi: 10.1016/0003-9861(57)90292-8. [DOI] [PubMed] [Google Scholar]
  12. Segal S., Genel M., Holtzapple P., Rea C. Transport of alpha-methyl-D-glucoside by human kidney cortex. Metabolism. 1973 Jan;22(1):67–76. doi: 10.1016/0026-0495(73)90030-9. [DOI] [PubMed] [Google Scholar]
  13. Simmons M. A., Jones M. D., Jr, Battaglia F. C., Meschia G. Insulin effect on fetal glucose utilization. Pediatr Res. 1978 Feb;12(2):90–92. doi: 10.1203/00006450-197802000-00004. [DOI] [PubMed] [Google Scholar]
  14. WIDDAS W. F. Transport mechanisms in the foetus. Br Med Bull. 1961 May;17:107–111. doi: 10.1093/oxfordjournals.bmb.a069882. [DOI] [PubMed] [Google Scholar]
  15. Watts C., Gain E. R. Glycogen metabolism in the liver of the developing rat. Biochem J. 1976 Nov 15;160(2):263–270. doi: 10.1042/bj1600263. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Watts C., Gain K., Malthus R. Blood glucose of mother and fetus late pregnancy of rats with glycogen storage disorder. Biol Neonate. 1982;41(3-4):204–208. doi: 10.1159/000241550. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES