Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1985 Apr;82(8):2220–2224. doi: 10.1073/pnas.82.8.2220

Cell-cycle dependence and properties of the HeLa cell DNA polymerase system.

C Delfini, E Alfani, V De Venezia, G Oberholtzer, C Tomasello, T Eremenko, P Volpe
PMCID: PMC397528  PMID: 3857575

Abstract

Analysis of the properties of the DNA polymerase (pol) system as a function of fundamental factors of the assay environment allowed a rather accurate estimation of its dependence on the HeLa cell cycle. For pol alpha, the temperature and pH optima were 38.1 degrees C and 8.0, respectively; for pol beta, these optima were 36.2 degrees C and pH 7.4. Pol gamma showed a pH optimum at 7.7. Optimum activity for both the alpha and beta enzymes was observed at 60 mM Tris. The maximal activity at 36.2 degrees C and pH 7.4 was associated with resistance to N-ethylmaleimide (MalNEt), whereas that at 38.1 degrees C and pH 8.0 was sensitive to MalNEt. Incorporation of [3H]dTTP was maximal after 1 hr of incubation for the former activity and after 4 hr, for the latter. In extracts from cells in early S phase, the pol activity decreased after 1 hr of incubation, was MalNEt-resistant, and was characterized by temperature and pH optima at 36.2 degrees C and 7.4, respectively. In extracts of late S-phase cells, the pol-catalyzed incorporation of [3H]dTTP continued after 4 hr of incubation, was MalNEt-sensitive, and was characterized by temperature and pH optima at 38.1 degrees C and 8.0, respectively. Thus, a pol beta-type activity appeared in early S phase, whereas a pol alpha-type activity appeared in late S. During the G1, M, and G2 phases, a background level of pol activity was observed that showed intermediate kinetic properties.

Full text

PDF
2220

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. APOSHIAN H. V., KORNBERG A. Enzymatic synthesis of deoxyribonucleic acid. IX. The polymerase formed after T2 bacteriophage infection of Escherichia coli: a new enzyme. J Biol Chem. 1962 Feb;237:519–525. [PubMed] [Google Scholar]
  2. BURTON K. A study of the conditions and mechanism of the diphenylamine reaction for the colorimetric estimation of deoxyribonucleic acid. Biochem J. 1956 Feb;62(2):315–323. doi: 10.1042/bj0620315. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Baril E. F., Jenkins M. D., Brown O. E., Laszlo J., Morris H. P. DNA polymerases I and II in regenerating rat liver and Morris hepatomas. Cancer Res. 1973 Jun;33(6):1187–1193. [PubMed] [Google Scholar]
  4. Bertazzoni U., Stefanini M., Noy G. P., Giulotto E., Nuzzo F., Falaschi A., Spadari S. Variations of DNA polymerase-alpha and -beta during prolonged stimulation of human lymphocytes. Proc Natl Acad Sci U S A. 1976 Mar;73(3):785–789. doi: 10.1073/pnas.73.3.785. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Chang L. M., Bollum F. J. A comparison of associated enzyme activities in various deoxyribonucleic acid polymerases. J Biol Chem. 1973 May 25;248(10):3398–3404. [PubMed] [Google Scholar]
  6. Chiu R. W., Baril E. F. Nuclear DNA polymerases and the HeLa cell cycle. J Biol Chem. 1975 Oct 10;250(19):7951–7957. [PubMed] [Google Scholar]
  7. Grosse F., Krauss G. Purification and partial characterization of a DNA polymerase alpha species from calf thymus. Nucleic Acids Res. 1980 Dec 11;8(23):5703–5714. doi: 10.1093/nar/8.23.5703. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Hachmann H. J., Lezius A. G. High-molecular-weight DNA polymerases from mouse myeloma. Purification and properties of three enzymes. Eur J Biochem. 1975 Jan 2;50(2):357–366. doi: 10.1111/j.1432-1033.1975.tb09811.x. [DOI] [PubMed] [Google Scholar]
  9. Hübscher U. DNA polymerases in prokaryotes and eukaryotes: mode of action and biological implications. Experientia. 1983 Jan 15;39(1):1–25. doi: 10.1007/BF01960616. [DOI] [PubMed] [Google Scholar]
  10. Hübscher U., Spanos A., Albert W., Grummt F., Banks G. R. Evidence that a high molecular weight replicative DNA polymerase is conserved during evolution. Proc Natl Acad Sci U S A. 1981 Nov;78(11):6771–6775. doi: 10.1073/pnas.78.11.6771. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Kozu T., Yagura T., Seno T. De novo DNA synthesis by a novel mouse DNA polymerase associated with primase activity. Nature. 1982 Jul 8;298(5870):180–182. doi: 10.1038/298180a0. [DOI] [PubMed] [Google Scholar]
  12. Kunkel T. A., Loeb L. A. Fidelity of mammalian DNA polymerases. Science. 1981 Aug 14;213(4509):765–767. doi: 10.1126/science.6454965. [DOI] [PubMed] [Google Scholar]
  13. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  14. Lewis B. J., Abrell J. W., Smith R. G., Gallo R. C. DNA polymerases in human lymphoblastoid cells infected with simian sarcoma virus. Biochim Biophys Acta. 1974 May 17;349(2):148–160. doi: 10.1016/0005-2787(74)90076-8. [DOI] [PubMed] [Google Scholar]
  15. Nishiyama Y., Tsurumi T., Aoki H., Maeno K. Identification of DNA polymerase(s) involved in the repair of viral and cellular DNA in herpes simplex virus type 2-infected cells. Virology. 1983 Sep;129(2):524–528. doi: 10.1016/0042-6822(83)90195-2. [DOI] [PubMed] [Google Scholar]
  16. Noy G. C., Dalpra L., Pedrini A. M., Ciarrocchi G., Giulotto E., Nuzzo F., Falaschi A. Evidence for two waves of induction of DNA enzymes in stimulated human lymphocytes. Nucleic Acids Res. 1974 Sep;1(9):1183–1199. doi: 10.1093/nar/1.9.1183. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Noy G. P., Weissbach A. HeLa cell DNA polymerases: the effect of cycloheximide in vivo and detection of a new form of DNA polymerase alpha. Biochim Biophys Acta. 1977 Jul 5;477(1):70–83. doi: 10.1016/0005-2787(77)90161-7. [DOI] [PubMed] [Google Scholar]
  18. Ostrander M., Cheng Y. C. Properties of herpes simplex virus type 1 and type 2 DNA polymerase. Biochim Biophys Acta. 1980 Sep 19;609(2):232–245. doi: 10.1016/0005-2787(80)90234-8. [DOI] [PubMed] [Google Scholar]
  19. PUCK T. T. STUDIES OF THE LIFE CYCLE OF MAMMALIAN CELLS. Cold Spring Harb Symp Quant Biol. 1964;29:167–176. doi: 10.1101/sqb.1964.029.01.021. [DOI] [PubMed] [Google Scholar]
  20. Spadari S., Weissbach A. The interrelation between DNA synthesis and various DNA polymerase activities in synchronized HeLa cells. J Mol Biol. 1974 Jun 15;86(1):11–20. doi: 10.1016/s0022-2836(74)80003-3. [DOI] [PubMed] [Google Scholar]
  21. Sugino A., Nakayama K. DNA polymerase alpha mutants from a Drosophila melanogaster cell line. Proc Natl Acad Sci U S A. 1980 Dec;77(12):7049–7053. doi: 10.1073/pnas.77.12.7049. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Volpe P., Eremendo-Volpe T. A method for measuring the length of each phase of the cell cycle in spinner's cultures. Exp Cell Res. 1970 Jun;60(3):456–458. doi: 10.1016/0014-4827(70)90542-2. [DOI] [PubMed] [Google Scholar]
  23. Volpe P., Eremenko-Volpe T. Quantitative studies on cell proteins in suspension cultures. Eur J Biochem. 1970 Jan;12(1):195–200. doi: 10.1111/j.1432-1033.1970.tb00837.x. [DOI] [PubMed] [Google Scholar]
  24. Volpe P., Eremenko T. Nuclear and cytoplasmic DNA synthesis during the mitotic cycle of HeLa cells. Eur J Biochem. 1973 Jan 15;32(2):227–232. doi: 10.1111/j.1432-1033.1973.tb02600.x. [DOI] [PubMed] [Google Scholar]
  25. Volpe P. The gene expression during the cell life cycle. Horiz Biochem Biophys. 1976;2:285–340. [PubMed] [Google Scholar]
  26. Weissbach A. Eukaryotic DNA polymerases. Annu Rev Biochem. 1977;46:25–47. doi: 10.1146/annurev.bi.46.070177.000325. [DOI] [PubMed] [Google Scholar]
  27. van der Werf S., Bouché J. P., Méchali M., Girard M. Involvement of both DNA polymerases alpha and gamma in the replication of adenovirus deoxyribonucleic acid in vitro. Virology. 1980 Jul 15;104(1):56–72. doi: 10.1016/0042-6822(80)90365-7. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES