Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1985 May;82(9):2728–2730. doi: 10.1073/pnas.82.9.2728

19-Hydroxylation of androgens in the rat brain.

E F Hahn, S Miyairi, J Fishman
PMCID: PMC397638  PMID: 3857612

Abstract

Aromatization of androgens in the central nervous system is linked with sexual differentiation of the brain and, thus, determines the nature of sexual behavior and the control of gonadotropin secretion. The process of aromatization, as determined in the human placenta, proceeds through two successive hydroxylations at C-19, the products of which are then virtually completely converted via a third hydroxylation at C-2 to estrogens. We now report that in the rat brain, 19-hydroxylation of androgens greatly exceeds aromatization and the 19-hydroxy- and 19-oxoandrogen products accumulate in quantities 5 times greater than the estrogens. This relationship implies that the aromatization sequence in the brain is deficient in the terminal hydroxylase, and the process is distinct from that in other tissues. The function of 19-hydroxy- and 19-oxotestosterone in the central nervous system is unknown but, unlike the reduced or aromatized metabolites of the male hormone, these substances cannot be delivered from the circulation and their presence in the brain is totally dependent on in situ formation, making them logical candidates for modulators of neuronal functions.

Full text

PDF
2728

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Akhtar M., Calder M. R., Corina D. L., Wright J. N. Mechanistic studies on C-19 demethylation in oestrogen biosynthesis. Biochem J. 1982 Mar 1;201(3):569–580. doi: 10.1042/bj2010569. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Fishman J., Goto J. Mechanism of estrogen biosynthesis. Participation of multiple enzyme sites in placental aromatase hydroxylations. J Biol Chem. 1981 May 10;256(9):4466–4471. [PubMed] [Google Scholar]
  3. George F. W., Ojeda S. R. Changes in aromatase activity in the rat brain during embryonic, neonatal, and infantile development. Endocrinology. 1982 Aug;111(2):522–529. doi: 10.1210/endo-111-2-522. [DOI] [PubMed] [Google Scholar]
  4. Glowinski J., Iversen L. L. Regional studies of catecholamines in the rat brain. I. The disposition of [3H]norepinephrine, [3H]dopamine and [3H]dopa in various regions of the brain. J Neurochem. 1966 Aug;13(8):655–669. doi: 10.1111/j.1471-4159.1966.tb09873.x. [DOI] [PubMed] [Google Scholar]
  5. Goto J., Fishman J. Participation of a nonenzymatic transformation in the biosynthesis of estrogens from androgens. Science. 1977 Jan 7;195(4273):80–81. doi: 10.1126/science.831259. [DOI] [PubMed] [Google Scholar]
  6. HOLLANDER N. Role of 19-hydroxy, delta4-androstene-3, 17-dione as an intermediate for aromatization of delta4-androstene-3, 17-dione by placental microsomes. Endocrinology. 1962 Nov;71:723–728. doi: 10.1210/endo-71-5-723. [DOI] [PubMed] [Google Scholar]
  7. Hahn E. F., Fishman J. Immunological probe of estrogen biosynthesis. Evidence for the 2 beta-hydroxylative pathway in aromatization of androgens. J Biol Chem. 1984 Feb 10;259(3):1689–1694. [PubMed] [Google Scholar]
  8. Hosoda H., Fishman J. Unusually facile aromatization of 2 beta-hydroxy-19-oxo-4-androstene-3, 17-dione to estrone. Implications in estrogen biosynthesis. J Am Chem Soc. 1974 Nov 13;96(23):7325–7329. doi: 10.1021/ja00830a025. [DOI] [PubMed] [Google Scholar]
  9. Kelly W. G., De Leon O., Rizkallah T. H. The role of 19-hydroxy-delta4-androstene-3,17-dione in the conversion of circulating delta4-androstene-3, 17-dione to estrone. J Clin Endocrinol Metab. 1976 Jul;43(1):190–194. doi: 10.1210/jcem-43-1-190. [DOI] [PubMed] [Google Scholar]
  10. Kelly W. G., Judd D., Stolee A. Aromatization of delta4-androstene-3,17-dione, 19-hydroxy-delta4-androstene-3,17-dione, and 19-oxo-delta4-androstene-3,17-dione at a common catalytic site in human placental microsomes. Biochemistry. 1977 Jan 11;16(1):140–145. doi: 10.1021/bi00620a024. [DOI] [PubMed] [Google Scholar]
  11. MEYER A. S. Conversion of 19-hydroxy-delta 4-androstene-3,17-dione to estrone by endocrine tissue. Biochim Biophys Acta. 1955 Jul;17(3):441–442. doi: 10.1016/0006-3002(55)90395-4. [DOI] [PubMed] [Google Scholar]
  12. McDonald P. G., Doughty C. Effect of neonatal administration of different androgens in the female rat: correlation between aromatization and the induction of sterilization. J Endocrinol. 1974 Apr;61(1):95–103. [PubMed] [Google Scholar]
  13. McEwen B. S., Lieberburg I., Chaptal C., Krey L. C. Aromatization: important for sexual differentiation of the neonatal rat brain. Horm Behav. 1977 Dec;9(3):249–263. doi: 10.1016/0018-506x(77)90060-5. [DOI] [PubMed] [Google Scholar]
  14. Miyairi S., Fishman J. Novel method of evaluating biological 19-hydroxylation and aromatization of androgens. Biochem Biophys Res Commun. 1983 Dec 16;117(2):392–398. doi: 10.1016/0006-291x(83)91213-5. [DOI] [PubMed] [Google Scholar]
  15. Naftolin F., Ryan K. J., Davies I. J., Reddy V. V., Flores F., Petro Z., Kuhn M., White R. J., Takaoka Y., Wolin L. The formation of estrogens by central neuroendocrine tissues. Recent Prog Horm Res. 1975;31:295–319. doi: 10.1016/b978-0-12-571131-9.50012-8. [DOI] [PubMed] [Google Scholar]
  16. Osawa Y., Shibata K., Rohrer D., Weeks C., Duax W. L. Letter: Reassignment of the absolute configuration of 19-substituted 19-hydroxysteroids and stereomechanism of estrogen biosynthesis. J Am Chem Soc. 1975 Jul 23;97(15):4400–4402. doi: 10.1021/ja00848a046. [DOI] [PubMed] [Google Scholar]
  17. Parrott R. F., Davies R. V. Serum gonadotrophin levels in prepubertally castrated male sheep treated for long periods with propionated testosterone, dihydrotestosterone, 19-hydroxytestosterone or oestradiol. J Reprod Fertil. 1979 Jul;56(2):543–548. doi: 10.1530/jrf.0.0560543. [DOI] [PubMed] [Google Scholar]
  18. Raum W. J., Marcano M., Swerdloff R. S. Nuclear accumulation of estradiol derived from the aromatization of testosterone is inhibited by hypothalamic beta-receptor stimulation in the neonatal female rat. Biol Reprod. 1984 Mar;30(2):388–396. doi: 10.1095/biolreprod30.2.388. [DOI] [PubMed] [Google Scholar]
  19. Roselli C. E., Ellinwood W. E., Resko J. A. Regulation of brain aromatase activity in rats. Endocrinology. 1984 Jan;114(1):192–200. doi: 10.1210/endo-114-1-192. [DOI] [PubMed] [Google Scholar]
  20. Sekihara H. 19-Hydroxyandrostenedione: evidence for a new class of sodium-retaining and hypertensinogenic steroids. Endocrinology. 1983 Sep;113(3):1141–1148. doi: 10.1210/endo-113-3-1141. [DOI] [PubMed] [Google Scholar]
  21. Sekihara H. Evidence that 19-hydroxyandrostenedione is secreted by the adrenal cortex and is under the control of ACTH and the renin-angiotensin system in man. Biochem Biophys Res Commun. 1982 Mar 30;105(2):610–614. doi: 10.1016/0006-291x(82)91478-4. [DOI] [PubMed] [Google Scholar]
  22. Thompson E. A., Jr, Siiteri P. K. Utilization of oxygen and reduced nicotinamide adenine dinucleotide phosphate by human placental microsomes during aromatization of androstenedione. J Biol Chem. 1974 Sep 10;249(17):5364–5372. [PubMed] [Google Scholar]
  23. Weisz J., Gibbs C. Conversion of testosterone and androstenedione to estrogens in vitro by the brain of female rats. Endocrinology. 1974 Feb;94(2):616–620. doi: 10.1210/endo-94-2-616. [DOI] [PubMed] [Google Scholar]
  24. Whalen R. E., Olsen K. L. Role of aromatization in sexual differentiation: effects of prenatal ATD treatment and neonatal castration. Horm Behav. 1981 Jun;15(2):107–122. doi: 10.1016/0018-506x(81)90022-2. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES