Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1985 May;82(9):2799–2803. doi: 10.1073/pnas.82.9.2799

α-Amanitin resistance is developmentally regulated in carrot

L Pitto 1, F Lo Schiavo 1, M Terzi 1
PMCID: PMC397653  PMID: 16593558

Abstract

Carrot cells are capable of inactivating α-amanitin only in embryogenic conditions (regenerating cells and embryoids). Instead, the mutant line a3 is capable of inactivating the drug also in nonembryogenic conditions (vegetative growth). The mutation is dominant in somatic hybrids and is pleiotropic, allowing expression during vegetative growth of other embryonal functions. The inactivation of α-amanitin is due to the oxidative activity of tyrosinase.

Keywords: amatoxins, somatic embryogenesis, cell differentiation, oxidative detoxification, tyrosinase

Full text

PDF
2799

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Carlson D. P., Ross J. Human beta-globin promoter and coding sequences transcribed by RNA polymerase III. Cell. 1983 Oct;34(3):857–864. doi: 10.1016/0092-8674(83)90543-3. [DOI] [PubMed] [Google Scholar]
  2. Cochet-Meilhac M., Chambon P. Animal DNA-dependent RNA polymerases. 11. Mechanism of the inhibition of RNA polymerases B by amatoxins. Biochim Biophys Acta. 1974 Jun 27;353(2):160–184. doi: 10.1016/0005-2787(74)90182-8. [DOI] [PubMed] [Google Scholar]
  3. Jaenike J., Grimaldi D. A., Sluder A. E., Greenleaf A. L. agr-Amanitin Tolerance in Mycophagous Drosophila. Science. 1983 Jul 8;221(4606):165–167. doi: 10.1126/science.221.4606.165. [DOI] [PubMed] [Google Scholar]
  4. Montague M. J., Armstrong T. A., Jaworski E. G. Polyamine Metabolism in Embryogenic Cells of Daucus carota: II. Changes in Arginine Decarboxylase Activity. Plant Physiol. 1979 Feb;63(2):341–345. doi: 10.1104/pp.63.2.341. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Sung Z. R. Cycloheximide resistance in carrot culture: a differentiated function. Plant Physiol. 1981 Jul;68(1):261–264. doi: 10.1104/pp.68.1.261. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Sung Z. R., Okimoto R. Embryonic proteins in somatic embryos of carrot. Proc Natl Acad Sci U S A. 1981 Jun;78(6):3683–3687. doi: 10.1073/pnas.78.6.3683. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES