Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1985 May;82(10):3082–3085. doi: 10.1073/pnas.82.10.3082

Electrostatic influence on energetics of electron transfer reactions.

D C Rees
PMCID: PMC397718  PMID: 3858805

Abstract

Electron transfer chains in biological systems must operate efficiently to satisfy metabolic energetic requirements. The component proteins in these chains are expected to exhibit characteristic structural features that facilitate electron transfer to the appropriate donor and acceptor proteins. A survey of soluble one-electron carrier proteins indicates a significant tendency for lower potential proteins to be more negatively charged than higher potential proteins. Consideration of the electrostatic consequences of this pattern of charge asymmetry suggests that the reduction potential difference between the two proteins will be minimized in the precursor complex associated with electron transfer. An equivalent statement is that the change in free energy accompanying electron transfer in the complex will approach zero. This behavior is consistent with theoretical arguments advanced by Albery and Knowles [Albery, W. J. & Knowles, J. R. (1976) Biochemistry 15, 5631-5640], which suggest that for the most efficient enzymes, the free energy difference between enzyme-bound species should approach zero. A more general derivation of this prediction is provided. The observed charge asymmetry in electron transfer proteins provides a structural mechanism for satisfying this requirement, thus accelerating the overall rate of electron transfer.

Full text

PDF
3082

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Albery W. J., Knowles J. R. Evolution of enzyme function and the development of catalytic efficiency. Biochemistry. 1976 Dec 14;15(25):5631–5640. doi: 10.1021/bi00670a032. [DOI] [PubMed] [Google Scholar]
  2. Bergaman C., Gandvik E. K., Nyman P. O., Strid L. The amino acid sequence of Stellacyanin from the lacquer tree. Biochem Biophys Res Commun. 1977 Aug 8;77(3):1052–1059. doi: 10.1016/s0006-291x(77)80084-3. [DOI] [PubMed] [Google Scholar]
  3. Boyer P. D., Cross R. L., Momsen W. A new concept for energy coupling in oxidative phosphorylation based on a molecular explanation of the oxygen exchange reactions. Proc Natl Acad Sci U S A. 1973 Oct;70(10):2837–2839. doi: 10.1073/pnas.70.10.2837. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Braaksma A., Haaker H., Grande H. J., Veeger C. The effect of the redox potential on the activity of the nitrogenase and on the Fe-protein of Azotobacter vinelandii. Eur J Biochem. 1982 Jan;121(3):483–491. doi: 10.1111/j.1432-1033.1982.tb05813.x. [DOI] [PubMed] [Google Scholar]
  5. Dunn M. F., Bernhard S. A., Anderson D., Copeland A., Morris R. G., Roque J. P. On site--site interactions in the liver alcohol dehydrogenase catalytic mechanism. Biochemistry. 1979 May 29;18(11):2346–2354. doi: 10.1021/bi00578a033. [DOI] [PubMed] [Google Scholar]
  6. Hausinger R. P., Howard J. B. The amino acid sequence of the nitrogenase iron protein from Azotobacter vinelandii. J Biol Chem. 1982 Mar 10;257(5):2483–2490. [PubMed] [Google Scholar]
  7. Kassner R. J., Yang W. A theoretical model for the effects of solvent and protein dielectric on the redox potentials of iron-sulfur clusters. J Am Chem Soc. 1977 Jun 22;99(13):4351–4355. doi: 10.1021/ja00455a024. [DOI] [PubMed] [Google Scholar]
  8. Koppenol W. H., Margoliash E. The asymmetric distribution of charges on the surface of horse cytochrome c. Functional implications. J Biol Chem. 1982 Apr 25;257(8):4426–4437. [PubMed] [Google Scholar]
  9. Matthew J. B., Weber P. C., Salemme F. R., Richards F. M. Electrostatic orientation during electron transfer between flavodoxin and cytochrome c. Nature. 1983 Jan 13;301(5896):169–171. doi: 10.1038/301169a0. [DOI] [PubMed] [Google Scholar]
  10. Meyer T. E., Przysiecki C. T., Watkins J. A., Bhattacharyya A., Simondsen R. P., Cusanovich M. A., Tollin G. Correlation between rate constant for reduction and redox potential as a basis for systematic investigation of reaction mechanisms of electron transfer proteins. Proc Natl Acad Sci U S A. 1983 Nov;80(22):6740–6744. doi: 10.1073/pnas.80.22.6740. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Nageswara Rao B. D., Kayne F. J., Cohn M. 31P NMR studies of enzyme-bound substrates of rabbit muscle pyruvate kinase. Equilibrium constants, exchange rates, and NMR parameters. J Biol Chem. 1979 Apr 25;254(8):2689–2696. [PubMed] [Google Scholar]
  12. Rees D. C. Experimental evaluation of the effective dielectric constant of proteins. J Mol Biol. 1980 Aug 15;141(3):323–326. doi: 10.1016/0022-2836(80)90184-9. [DOI] [PubMed] [Google Scholar]
  13. Salemme F. R. An hypothetical structure for an intermolecular electron transfer complex of cytochromes c and b5. J Mol Biol. 1976 Apr 15;102(3):563–568. doi: 10.1016/0022-2836(76)90334-x. [DOI] [PubMed] [Google Scholar]
  14. Scawen M. D., Ramshaw J. A., Boulter D. The amino acid sequence of plastocyanin from spinach. (Spinacia oleracea L.). Biochem J. 1975 May;147(2):343–349. doi: 10.1042/bj1470343. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Simondsen R. P., Weber P. C., Salemme F. R., Tollin G. Transient kinetics of electron transfer reactions of flavodoxin: ionic strength dependence of semiquinone oxidation by cytochrome c, ferricyanide, and ferric ethylenediaminetetraacetic acid and computer modeling of reaction complexes. Biochemistry. 1982 Dec 7;21(25):6366–6375. doi: 10.1021/bi00268a008. [DOI] [PubMed] [Google Scholar]
  16. Tanaka M., Haniu M., Yasunobu K. T. The amino acid sequence of Clostridium pasteurianum iron protein, a component of nitrogenase. III. The NH2-terminal and COOH-terminal sequences, tryptic peptides of large cyanogen bromide peptides, and the complete sequence. J Biol Chem. 1977 Oct 25;252(20):7093–7100. [PubMed] [Google Scholar]
  17. Tanaka M., Haniu M., Yasunobu K. T. The primary structure of bovine adrenodoxin. Biochem Biophys Res Commun. 1970;39(6):1182–1188. doi: 10.1016/0006-291x(70)90685-6. [DOI] [PubMed] [Google Scholar]
  18. Warshel A., Churg A. K. Converting structural changes upon oxidation of cytochrome c to electrostatic reorganization energy. J Mol Biol. 1983 Aug 15;168(3):693–697. doi: 10.1016/s0022-2836(83)80310-6. [DOI] [PubMed] [Google Scholar]
  19. Zumft W. G., Mortenson L. E., Palmer G. Electron-paramagnetic-resonance studies on nitrogenase. Investigation of the oxidation-reduction behaviour of azoferredoxin and molybdoferredoxin with potentiometric and rapid-freeze techniques. Eur J Biochem. 1974 Aug 1;46(3):525–535. doi: 10.1111/j.1432-1033.1974.tb03646.x. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES