Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1985 May;82(10):3212–3216. doi: 10.1073/pnas.82.10.3212

A second tRNA binding site on elongation factor Tu is induced while the factor is bound to the ribosome.

J M Van Noort, B Kraal, L Bosch
PMCID: PMC397745  PMID: 3923474

Abstract

Previously, we reported that the antibiotic kirromycin induces two tRNA-binding sites on the elongation factor Tu. The classical binding site (site I) binds aminoacyl-tRNA and, with much less affinity, deacylated tRNA. The kirromycin-induced site II binds aminoacyl-tRNA, peptidyl-tRNA, and deacylated tRNA with comparable affinities. Accordingly, 3'-oxidized tRNA can be cross-linked in the presence of the antibiotic to two specific sites of EF-Tu: Lys-237 and Lys-208. Here, we report that 3'-oxidized tRNAPhe, bound to a ribosome-poly(U) complex, can also be cross-linked to either one of these two sites. When located in the ribosomal peptidyl site, it cross-links exclusively to Lys-208; when located in the ribosomal aminoacyl site, it cross-links exclusively to Lys-237, irrespective of the presence of kirromycin. Since no cross-linking could be detected in the absence of ribosomes and kirromycin, we conclude that the tRNA-binding site II is induced upon interaction of aminoacyl-tRNA-EF-Tu-GTP with the ribosome-mRNA complex. The results indicate that, on the ribosome, EF-Tu interacts with peptidyl-site-bound peptidyl-tRNA through tRNA-binding site II and with aminoacyl-site-bound aminoacyl-tRNA through tRNA-binding site I.

Full text

PDF
3212

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Antonsson B., Leberman R. Modification of amino groups in EF-Tu.GTP and the ternary complex EF-Tu.GTP.valyl-tRNAVal. Eur J Biochem. 1984 Jun 15;141(3):483–487. doi: 10.1111/j.1432-1033.1984.tb08218.x. [DOI] [PubMed] [Google Scholar]
  2. Bosch L., Kraal B., Van der Meide P. H., Duisterwinkel F. J., Van Noort J. M. The elongation factor EF-Tu and its two encoding genes. Prog Nucleic Acid Res Mol Biol. 1983;30:91–126. doi: 10.1016/s0079-6603(08)60684-4. [DOI] [PubMed] [Google Scholar]
  3. De Groot N., Panet A., Lapidot Y. The binding of purified Phe-tRNA and peptidyl-tRNA Phe to Escherichia coli ribosomes. Eur J Biochem. 1971 Dec 10;23(3):523–527. doi: 10.1111/j.1432-1033.1971.tb01649.x. [DOI] [PubMed] [Google Scholar]
  4. Douglass J., Blumenthal T. Conformational transition of protein synthesis elongation factor Tu induced by guanine nucleotides. Modulation by kirromycin and elongation factor Ts. J Biol Chem. 1979 Jun 25;254(12):5383–5387. [PubMed] [Google Scholar]
  5. Duisterwinkel F. J., De Graaf J. M., Schretlen P. J., Kraal B., Bosch L. A mutant elongation factor Tu which does not immobilize the ribosome upon binding of kirromycin. Eur J Biochem. 1981 Jun;117(1):7–12. doi: 10.1111/j.1432-1033.1981.tb06295.x. [DOI] [PubMed] [Google Scholar]
  6. Haenni A. L., Chapeville F. The behaviour of acetylphenylalanyl soluble ribonucleic acid in polyphenylalanine synthesis. Biochim Biophys Acta. 1966 Jan 18;114(1):135–148. doi: 10.1016/0005-2787(66)90261-9. [DOI] [PubMed] [Google Scholar]
  7. Hol W. G., Halie L. M., Sander C. Dipoles of the alpha-helix and beta-sheet: their role in protein folding. Nature. 1981 Dec 10;294(5841):532–536. doi: 10.1038/294532a0. [DOI] [PubMed] [Google Scholar]
  8. Hélène C., Lancelot G. Interactions between functional groups in protein-nucleic acid associations. Prog Biophys Mol Biol. 1982;39(1):1–68. doi: 10.1016/0079-6107(83)90013-5. [DOI] [PubMed] [Google Scholar]
  9. Jonák J., Smrt J., Holý A., Rychlík I. Interaction of Escherichia coli EF-Tu.GTP and EF-Tu.GDP with analogues of the 3' terminus of aminoacyl-tRNA. Eur J Biochem. 1980 Apr;105(2):315–320. doi: 10.1111/j.1432-1033.1980.tb04503.x. [DOI] [PubMed] [Google Scholar]
  10. Kaziro Y. The role of guanosine 5'-triphosphate in polypeptide chain elongation. Biochim Biophys Acta. 1978 Sep 21;505(1):95–127. doi: 10.1016/0304-4173(78)90009-5. [DOI] [PubMed] [Google Scholar]
  11. Lührmann R., Eckhardt H., Stöffler G. Codon-anticodon interaction at the ribosomal peptidyl-site. Nature. 1979 Aug 2;280(5721):423–425. doi: 10.1038/280423a0. [DOI] [PubMed] [Google Scholar]
  12. Rheinberger H. J., Sternbach H., Nierhaus K. H. Three tRNA binding sites on Escherichia coli ribosomes. Proc Natl Acad Sci U S A. 1981 Sep;78(9):5310–5314. doi: 10.1073/pnas.78.9.5310. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Rubin J. R., Morikawa K., Nyborg J., la Cour T. F., Clark B. F., Miller D. L. Structural features of the GDP binding site of elongation factor Tu from Escherichia coli as determined by x-ray diffraction. FEBS Lett. 1981 Jun 29;129(1):177–179. doi: 10.1016/0014-5793(81)80784-3. [DOI] [PubMed] [Google Scholar]
  14. Van Noort J. M., Kraal B., Bosch L., La Cour T. F., Nyborg J., Clark B. F. Cross-linking of tRNA at two different sites of the elongation factor Tu. Proc Natl Acad Sci U S A. 1984 Jul;81(13):3969–3972. doi: 10.1073/pnas.81.13.3969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Van der Meide P. H., Borman T. H., Van Kimmenade A. M., Van de Putte P., Bosch L. Elongation factor Tu isolated from Escherichia coli mutants altered in TufA and tufB. Proc Natl Acad Sci U S A. 1980 Jul;77(7):3922–3926. doi: 10.1073/pnas.77.7.3922. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Verhoef N. J., Kraal B., Bosch L. The binding of aminoacyl-tRNA to complexes of Escherichia coli ribosomes and plant viral RNA. Biochim Biophys Acta. 1968 Feb 26;155(2):456–464. doi: 10.1016/0005-2787(68)90191-3. [DOI] [PubMed] [Google Scholar]
  17. van Noort J. M., Duisterwinkel F. J., Jonák J., Sedlácek J., Kraal B., Bosch L. The elongation factor Tu.kirromycin complex has two binding sites for tRNA molecules. EMBO J. 1982;1(10):1199–1205. doi: 10.1002/j.1460-2075.1982.tb00013.x. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES