Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1985 May;82(10):3415–3419. doi: 10.1073/pnas.82.10.3415

Human lambda light-chain constant region gene CMor lambda: the primary structure of lambda VI Bence Jones protein Mor.

B Frangione, T Moloshok, F Prelli, A Solomon
PMCID: PMC397786  PMID: 3923477

Abstract

Serologic, structural, and genetic analyses have shown that the constant (C) region of human kappa light chains is encoded by a single gene, whereas that of lambda chains is encoded by multiple genes. We have determined the complete C region amino acid sequence of two monoclonal lambda VI light chains, Bence Jones proteins Sut and Mor. The C region of lambda chains Sut and Mor consists of 105 residues, as is characteristic for human lambda light chains, of which 102 are identical in sequence. Protein Sut has the C region sequence associated with the C lambda isotype Mcg-, Kern-, Oz+ and represents a product of the C lambda 3 (Kern-, Oz+) gene. Protein Mor has a C region sequence associated with Mcg-, Kern-, and Oz- proteins but differs from protein Sut by the presence of three amino acid interchanges at positions 168, 176, and 194. These substitutions distinguish protein Mor from lambda chains encoded by the C lambda 1 (Mcg+), C lambda 2 (Kern-, Oz-), and C lambda 3 (Kern-, Oz+) genes and provide further evidence for polymorphism of the human C lambda genome. The gene encoding the C region sequence of lambda chain Mor is designated CMor lambda.

Full text

PDF
3415

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Appella E., Ein D. Two types of lambda polypeptide chains in human immunoglobulins based on an amino acid substitution at position 190. Proc Natl Acad Sci U S A. 1967 May;57(5):1449–1454. doi: 10.1073/pnas.57.5.1449. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Chien Y. H., Gascoigne N. R., Kavaler J., Lee N. E., Davis M. M. Somatic recombination in a murine T-cell receptor gene. Nature. 1984 May 24;309(5966):322–326. doi: 10.1038/309322a0. [DOI] [PubMed] [Google Scholar]
  3. Ein D. Nonallelic behavior of the Oz groups in human lambda immunoglobulin chains. Proc Natl Acad Sci U S A. 1968 Jul;60(3):982–985. doi: 10.1073/pnas.60.3.982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Fett F. W., Deutsch H. F. A new lambda-chain gene. Immunochemistry. 1975 Aug;12(8):643–652. doi: 10.1016/0019-2791(75)90209-8. [DOI] [PubMed] [Google Scholar]
  5. Fett J. W., Deutsch H. F. Primary structure of the Mcg lambda chain. Biochemistry. 1974 Sep 24;13(20):4102–4114. doi: 10.1021/bi00717a007. [DOI] [PubMed] [Google Scholar]
  6. Fett J. W., Deutsch H. F. The variability of human lambda-chain constant regions and some relationships to V-regions sequences. Immunochemistry. 1976 Feb;13(2):149–155. doi: 10.1016/0019-2791(76)90283-4. [DOI] [PubMed] [Google Scholar]
  7. Frangione B., Milstein C., Franklin E. C. Chemical typing of immunoglobulins. Nature. 1969 Jan 11;221(5176):149–151. doi: 10.1038/221149a0. [DOI] [PubMed] [Google Scholar]
  8. Frangione B., Moloshok T., Solomon A. Primary structure of the variable region of a human lambda VI light chain: Bence Jones protein SUT. J Immunol. 1983 Nov;131(5):2490–2493. [PubMed] [Google Scholar]
  9. Gibson D., Levanon M., Smithies O. Heterogeneity of normal human immunoglobulin light chains. Nonallelic variation in the constant region of lambda chains. Biochemistry. 1971 Aug 3;10(16):3114–3122. doi: 10.1021/bi00792a021. [DOI] [PubMed] [Google Scholar]
  10. Hess M., Hilschmann N., Rivat L., Rivat C., Ropartz C. Isotypes in human immunoglobulin lambda-chains. Nat New Biol. 1971 Nov 10;234(45):58–61. doi: 10.1038/newbio234058a0. [DOI] [PubMed] [Google Scholar]
  11. Hieter P. A., Hollis G. F., Korsmeyer S. J., Waldmann T. A., Leder P. Clustered arrangement of immunoglobulin lambda constant region genes in man. Nature. 1981 Dec 10;294(5841):536–540. doi: 10.1038/294536a0. [DOI] [PubMed] [Google Scholar]
  12. Hieter P. A., Max E. E., Seidman J. G., Maizel J. V., Jr, Leder P. Cloned human and mouse kappa immunoglobulin constant and J region genes conserve homology in functional segments. Cell. 1980 Nov;22(1 Pt 1):197–207. doi: 10.1016/0092-8674(80)90168-3. [DOI] [PubMed] [Google Scholar]
  13. Houmard J., Drapeau G. R. Staphylococcal protease: a proteolytic enzyme specific for glutamoyl bonds. Proc Natl Acad Sci U S A. 1972 Dec;69(12):3506–3509. doi: 10.1073/pnas.69.12.3506. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Jabusch J. R., Deutsch H. F. Primary structure of a human lambda-chain (Weir) of the Mcg type. Mol Immunol. 1982 Jul;19(7):901–906. doi: 10.1016/0161-5890(82)90356-x. [DOI] [PubMed] [Google Scholar]
  15. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  16. Lieu T. S., Deutsch H. F., Tischendorf F. W. Human lambda-chain sequence variations and serologic associations. Immunochemistry. 1977 Jun;14(6):429–433. doi: 10.1016/0019-2791(77)90168-9. [DOI] [PubMed] [Google Scholar]
  17. Lopez de Castro J. A., Chiu Y. Y., Poljak R. J. Amino acid sequence of the variable region of the light (lambda) chain from human myeloma cryoimmunoglobulin IgG Hil. Biochemistry. 1978 May 2;17(9):1718–1723. doi: 10.1021/bi00602a021. [DOI] [PubMed] [Google Scholar]
  18. Merryman C., Frangione B., Franklin E. C., Benacerraf B. Peptide differences in purified mouse antibodies. Immunochemistry. 1967 Jan;4(1):31–36. doi: 10.1016/0019-2791(67)90194-2. [DOI] [PubMed] [Google Scholar]
  19. Okada Y., Nozu Y., Titani K., Watanabe S., Hara H., Kitagawa M. Amino acid sequence of lambda chain of human immunoglobulin A. Immunochemistry. 1972 Feb;9(2):207–210. doi: 10.1016/0019-2791(72)90040-7. [DOI] [PubMed] [Google Scholar]
  20. Ponstingl H., Hess M., Hilschmann N. Zur Strukturregel der Antikörper. Die Primärstruktur einer monoklonalen Immunglobulin-L-Kette von lambda-Typ, Subgruppe IV (Bence-Jones-Protein Kern). V. Die vollständige Aminosäuresequenz und ihre genetische Interpretation. Hoppe Seylers Z Physiol Chem. 1971 Feb;352(2):247–266. [PubMed] [Google Scholar]
  21. Ponstingl H., Hess M., Hilschmann N. Zur Strukturregel der Antikörper. Die Primärstruktur einer monoklonalen Immunglobulin-L-Kette von lambda-Typ, Subgruppe IV (Bence-Jones-Protein Kern). V. Die vollständige Aminosäuresequenz und ihre genetische Interpretation. Hoppe Seylers Z Physiol Chem. 1971 Feb;352(2):247–266. [PubMed] [Google Scholar]
  22. Pras M., Prelli F., Franklin E. C., Frangione B. Primary structure of an amyloid prealbumin variant in familial polyneuropathy of Jewish origin. Proc Natl Acad Sci U S A. 1983 Jan;80(2):539–542. doi: 10.1073/pnas.80.2.539. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Reilly E. B., Blomberg B., Imanishi-Kari T., Tonegawa S., Eisen H. N. Restricted association of V and J-C gene segments for mouse lambda chains. Proc Natl Acad Sci U S A. 1984 Apr;81(8):2484–2488. doi: 10.1073/pnas.81.8.2484. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Schiffer M., Girling R. L., Ely K. R., Edmundson A. B. Structure of a lambda-type Bence-Jones protein at 3.5-A resolution. Biochemistry. 1973 Nov 6;12(23):4620–4631. doi: 10.1021/bi00747a013. [DOI] [PubMed] [Google Scholar]
  25. Scott C. L., Potter M. Polymorphism of C lambda genes and units of duplication in the genus Mus. J Immunol. 1984 May;132(5):2630–2637. [PubMed] [Google Scholar]
  26. Shimizu A., Honzawa M., Yamamura Y., Arata Y. Proton nuclear magnetic resonance studies of human immunoglobulins. Solution conformation of the constant domain of the lambda light chains and identification of the isotypes. Biochemistry. 1980 Jun 10;19(12):2784–2790. doi: 10.1021/bi00553a038. [DOI] [PubMed] [Google Scholar]
  27. Shinoda T., Yoshimura K., Kametani F., Isobe T. A new immunoglobulin marker. Biochem Biophys Res Commun. 1983 Dec 16;117(2):587–592. doi: 10.1016/0006-291x(83)91241-x. [DOI] [PubMed] [Google Scholar]
  28. Siu G., Clark S. P., Yoshikai Y., Malissen M., Yanagi Y., Strauss E., Mak T. W., Hood L. The human T cell antigen receptor is encoded by variable, diversity, and joining gene segments that rearrange to generate a complete V gene. Cell. 1984 Jun;37(2):393–401. doi: 10.1016/0092-8674(84)90369-6. [DOI] [PubMed] [Google Scholar]
  29. Solomon A., Frangione B., Franklin E. C. Bence Jones proteins and light chains of immunoglobulins. Preferential association of the V lambda VI subgroup of human light chains with amyloidosis AL (lambda). J Clin Invest. 1982 Aug;70(2):453–460. doi: 10.1172/JCI110635. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Taub R. A., Hollis G. F., Hieter P. A., Korsmeyer S., Waldmann T. A., Leder P. Variable amplification of immunoglobulin lambda light-chain genes in human populations. Nature. 1983 Jul 14;304(5922):172–174. doi: 10.1038/304172a0. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES